SHA256
1
0
forked from pool/python-nltk
python-nltk/nltk-pr3207-py312.patch
Daniel Garcia f64d1a206e Accepting request 1160467 from home:bnavigator:branches:devel:languages:python
- Update to 3.8.1
  * Resolve RCE & XSS vulnerabilities in localhost WordNet Browser
  * Add Python 3.11 support
- Update nltk_data archive
- Drop port-2to3.patch
- Add nltk-pr3207-py312.patch for Python 3.12 support
  * gh#nltk/nltk#3207

OBS-URL: https://build.opensuse.org/request/show/1160467
OBS-URL: https://build.opensuse.org/package/show/devel:languages:python/python-nltk?expand=0&rev=45
2024-03-22 06:59:49 +00:00

1783 lines
73 KiB
Diff
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From 25d35fc4283dedd2053ec6d821f4b707fff8d72c Mon Sep 17 00:00:00 2001
From: Konstantin Chernyshev <k4black@ya.ru>
Date: Thu, 16 Nov 2023 19:00:15 +0100
Subject: [PATCH 1/8] ci: enable 3.12 in ci tests
---
.github/workflows/ci.yaml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
Index: nltk-3.8.1/nltk/test/unit/translate/test_bleu.py
===================================================================
--- nltk-3.8.1.orig/nltk/test/unit/translate/test_bleu.py
+++ nltk-3.8.1/nltk/test/unit/translate/test_bleu.py
@@ -2,7 +2,6 @@
Tests for BLEU translation evaluation metric
"""
-import io
import unittest
from nltk.data import find
Index: nltk-3.8.1/nltk/translate/bleu_score.py
===================================================================
--- nltk-3.8.1.orig/nltk/translate/bleu_score.py
+++ nltk-3.8.1/nltk/translate/bleu_score.py
@@ -1,685 +1,710 @@
-# Natural Language Toolkit: BLEU Score
-#
-# Copyright (C) 2001-2023 NLTK Project
-# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
-# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
-# URL: <https://www.nltk.org/>
-# For license information, see LICENSE.TXT
-
-"""BLEU score implementation."""
-
-import math
-import sys
-import warnings
-from collections import Counter
-from fractions import Fraction
-
-from nltk.util import ngrams
-
-
-def sentence_bleu(
- references,
- hypothesis,
- weights=(0.25, 0.25, 0.25, 0.25),
- smoothing_function=None,
- auto_reweigh=False,
-):
- """
- Calculate BLEU score (Bilingual Evaluation Understudy) from
- Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
- "BLEU: a method for automatic evaluation of machine translation."
- In Proceedings of ACL. https://www.aclweb.org/anthology/P02-1040.pdf
-
- >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
- ... 'ensures', 'that', 'the', 'military', 'always',
- ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
-
- >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
- ... 'forever', 'hearing', 'the', 'activity', 'guidebook',
- ... 'that', 'party', 'direct']
-
- >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
- ... 'ensures', 'that', 'the', 'military', 'will', 'forever',
- ... 'heed', 'Party', 'commands']
-
- >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
- ... 'guarantees', 'the', 'military', 'forces', 'always',
- ... 'being', 'under', 'the', 'command', 'of', 'the',
- ... 'Party']
-
- >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
- ... 'army', 'always', 'to', 'heed', 'the', 'directions',
- ... 'of', 'the', 'party']
-
- >>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
- 0.5045...
-
- If there is no ngrams overlap for any order of n-grams, BLEU returns the
- value 0. This is because the precision for the order of n-grams without
- overlap is 0, and the geometric mean in the final BLEU score computation
- multiplies the 0 with the precision of other n-grams. This results in 0
- (independently of the precision of the other n-gram orders). The following
- example has zero 3-gram and 4-gram overlaps:
-
- >>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
- 0.0
-
- To avoid this harsh behaviour when no ngram overlaps are found a smoothing
- function can be used.
-
- >>> chencherry = SmoothingFunction()
- >>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
- ... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
- 0.0370...
-
- The default BLEU calculates a score for up to 4-grams using uniform
- weights (this is called BLEU-4). To evaluate your translations with
- higher/lower order ngrams, use customized weights. E.g. when accounting
- for up to 5-grams with uniform weights (this is called BLEU-5) use:
-
- >>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
- >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
- 0.3920...
-
- Multiple BLEU scores can be computed at once, by supplying a list of weights.
- E.g. for computing BLEU-2, BLEU-3 *and* BLEU-4 in one computation, use:
- >>> weights = [
- ... (1./2., 1./2.),
- ... (1./3., 1./3., 1./3.),
- ... (1./4., 1./4., 1./4., 1./4.)
- ... ]
- >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
- [0.7453..., 0.6240..., 0.5045...]
-
- :param references: reference sentences
- :type references: list(list(str))
- :param hypothesis: a hypothesis sentence
- :type hypothesis: list(str)
- :param weights: weights for unigrams, bigrams, trigrams and so on (one or a list of weights)
- :type weights: tuple(float) / list(tuple(float))
- :param smoothing_function:
- :type smoothing_function: SmoothingFunction
- :param auto_reweigh: Option to re-normalize the weights uniformly.
- :type auto_reweigh: bool
- :return: The sentence-level BLEU score. Returns a list if multiple weights were supplied.
- :rtype: float / list(float)
- """
- return corpus_bleu(
- [references], [hypothesis], weights, smoothing_function, auto_reweigh
- )
-
-
-def corpus_bleu(
- list_of_references,
- hypotheses,
- weights=(0.25, 0.25, 0.25, 0.25),
- smoothing_function=None,
- auto_reweigh=False,
-):
- """
- Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
- the hypotheses and their respective references.
-
- Instead of averaging the sentence level BLEU scores (i.e. macro-average
- precision), the original BLEU metric (Papineni et al. 2002) accounts for
- the micro-average precision (i.e. summing the numerators and denominators
- for each hypothesis-reference(s) pairs before the division).
-
- >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
- ... 'ensures', 'that', 'the', 'military', 'always',
- ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
- >>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
- ... 'ensures', 'that', 'the', 'military', 'will', 'forever',
- ... 'heed', 'Party', 'commands']
- >>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
- ... 'guarantees', 'the', 'military', 'forces', 'always',
- ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
- >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
- ... 'army', 'always', 'to', 'heed', 'the', 'directions',
- ... 'of', 'the', 'party']
-
- >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
- ... 'interested', 'in', 'world', 'history']
- >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
- ... 'because', 'he', 'read', 'the', 'book']
-
- >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
- >>> hypotheses = [hyp1, hyp2]
- >>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
- 0.5920...
-
- The example below show that corpus_bleu() is different from averaging
- sentence_bleu() for hypotheses
-
- >>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
- >>> score2 = sentence_bleu([ref2a], hyp2)
- >>> (score1 + score2) / 2 # doctest: +ELLIPSIS
- 0.6223...
-
- Custom weights may be supplied to fine-tune the BLEU score further.
- A tuple of float weights for unigrams, bigrams, trigrams and so on can be given.
- >>> weights = (0.1, 0.3, 0.5, 0.1)
- >>> corpus_bleu(list_of_references, hypotheses, weights=weights) # doctest: +ELLIPSIS
- 0.5818...
-
- This particular weight gave extra value to trigrams.
- Furthermore, multiple weights can be given, resulting in multiple BLEU scores.
- >>> weights = [
- ... (0.5, 0.5),
- ... (0.333, 0.333, 0.334),
- ... (0.25, 0.25, 0.25, 0.25),
- ... (0.2, 0.2, 0.2, 0.2, 0.2)
- ... ]
- >>> corpus_bleu(list_of_references, hypotheses, weights=weights) # doctest: +ELLIPSIS
- [0.8242..., 0.7067..., 0.5920..., 0.4719...]
-
- :param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
- :type list_of_references: list(list(list(str)))
- :param hypotheses: a list of hypothesis sentences
- :type hypotheses: list(list(str))
- :param weights: weights for unigrams, bigrams, trigrams and so on (one or a list of weights)
- :type weights: tuple(float) / list(tuple(float))
- :param smoothing_function:
- :type smoothing_function: SmoothingFunction
- :param auto_reweigh: Option to re-normalize the weights uniformly.
- :type auto_reweigh: bool
- :return: The corpus-level BLEU score.
- :rtype: float
- """
- # Before proceeding to compute BLEU, perform sanity checks.
-
- p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
- p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
- hyp_lengths, ref_lengths = 0, 0
-
- assert len(list_of_references) == len(hypotheses), (
- "The number of hypotheses and their reference(s) should be the " "same "
- )
-
- try:
- weights[0][0]
- except TypeError:
- weights = [weights]
- max_weight_length = max(len(weight) for weight in weights)
-
- # Iterate through each hypothesis and their corresponding references.
- for references, hypothesis in zip(list_of_references, hypotheses):
- # For each order of ngram, calculate the numerator and
- # denominator for the corpus-level modified precision.
- for i in range(1, max_weight_length + 1):
- p_i = modified_precision(references, hypothesis, i)
- p_numerators[i] += p_i.numerator
- p_denominators[i] += p_i.denominator
-
- # Calculate the hypothesis length and the closest reference length.
- # Adds them to the corpus-level hypothesis and reference counts.
- hyp_len = len(hypothesis)
- hyp_lengths += hyp_len
- ref_lengths += closest_ref_length(references, hyp_len)
-
- # Calculate corpus-level brevity penalty.
- bp = brevity_penalty(ref_lengths, hyp_lengths)
-
- # Collects the various precision values for the different ngram orders.
- p_n = [
- Fraction(p_numerators[i], p_denominators[i], _normalize=False)
- for i in range(1, max_weight_length + 1)
- ]
-
- # Returns 0 if there's no matching n-grams
- # We only need to check for p_numerators[1] == 0, since if there's
- # no unigrams, there won't be any higher order ngrams.
- if p_numerators[1] == 0:
- return 0 if len(weights) == 1 else [0] * len(weights)
-
- # If there's no smoothing, set use method0 from SmoothinFunction class.
- if not smoothing_function:
- smoothing_function = SmoothingFunction().method0
- # Smoothen the modified precision.
- # Note: smoothing_function() may convert values into floats;
- # it tries to retain the Fraction object as much as the
- # smoothing method allows.
- p_n = smoothing_function(
- p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
- )
-
- bleu_scores = []
- for weight in weights:
- # Uniformly re-weighting based on maximum hypothesis lengths if largest
- # order of n-grams < 4 and weights is set at default.
- if auto_reweigh:
- if hyp_lengths < 4 and weight == (0.25, 0.25, 0.25, 0.25):
- weight = (1 / hyp_lengths,) * hyp_lengths
-
- s = (w_i * math.log(p_i) for w_i, p_i in zip(weight, p_n) if p_i > 0)
- s = bp * math.exp(math.fsum(s))
- bleu_scores.append(s)
- return bleu_scores[0] if len(weights) == 1 else bleu_scores
-
-
-def modified_precision(references, hypothesis, n):
- """
- Calculate modified ngram precision.
-
- The normal precision method may lead to some wrong translations with
- high-precision, e.g., the translation, in which a word of reference
- repeats several times, has very high precision.
-
- This function only returns the Fraction object that contains the numerator
- and denominator necessary to calculate the corpus-level precision.
- To calculate the modified precision for a single pair of hypothesis and
- references, cast the Fraction object into a float.
-
- The famous "the the the ... " example shows that you can get BLEU precision
- by duplicating high frequency words.
-
- >>> reference1 = 'the cat is on the mat'.split()
- >>> reference2 = 'there is a cat on the mat'.split()
- >>> hypothesis1 = 'the the the the the the the'.split()
- >>> references = [reference1, reference2]
- >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
- 0.2857...
-
- In the modified n-gram precision, a reference word will be considered
- exhausted after a matching hypothesis word is identified, e.g.
-
- >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
- ... 'ensures', 'that', 'the', 'military', 'will',
- ... 'forever', 'heed', 'Party', 'commands']
- >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
- ... 'guarantees', 'the', 'military', 'forces', 'always',
- ... 'being', 'under', 'the', 'command', 'of', 'the',
- ... 'Party']
- >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
- ... 'army', 'always', 'to', 'heed', 'the', 'directions',
- ... 'of', 'the', 'party']
- >>> hypothesis = 'of the'.split()
- >>> references = [reference1, reference2, reference3]
- >>> float(modified_precision(references, hypothesis, n=1))
- 1.0
- >>> float(modified_precision(references, hypothesis, n=2))
- 1.0
-
- An example of a normal machine translation hypothesis:
-
- >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
- ... 'ensures', 'that', 'the', 'military', 'always',
- ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
-
- >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
- ... 'forever', 'hearing', 'the', 'activity', 'guidebook',
- ... 'that', 'party', 'direct']
-
- >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
- ... 'ensures', 'that', 'the', 'military', 'will',
- ... 'forever', 'heed', 'Party', 'commands']
-
- >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
- ... 'guarantees', 'the', 'military', 'forces', 'always',
- ... 'being', 'under', 'the', 'command', 'of', 'the',
- ... 'Party']
-
- >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
- ... 'army', 'always', 'to', 'heed', 'the', 'directions',
- ... 'of', 'the', 'party']
- >>> references = [reference1, reference2, reference3]
- >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
- 0.9444...
- >>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
- 0.5714...
- >>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
- 0.5882352941176471
- >>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
- 0.07692...
-
-
- :param references: A list of reference translations.
- :type references: list(list(str))
- :param hypothesis: A hypothesis translation.
- :type hypothesis: list(str)
- :param n: The ngram order.
- :type n: int
- :return: BLEU's modified precision for the nth order ngram.
- :rtype: Fraction
- """
- # Extracts all ngrams in hypothesis
- # Set an empty Counter if hypothesis is empty.
- counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
- # Extract a union of references' counts.
- # max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
- max_counts = {}
- for reference in references:
- reference_counts = (
- Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
- )
- for ngram in counts:
- max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
-
- # Assigns the intersection between hypothesis and references' counts.
- clipped_counts = {
- ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
- }
-
- numerator = sum(clipped_counts.values())
- # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
- # Usually this happens when the ngram order is > len(reference).
- denominator = max(1, sum(counts.values()))
-
- return Fraction(numerator, denominator, _normalize=False)
-
-
-def closest_ref_length(references, hyp_len):
- """
- This function finds the reference that is the closest length to the
- hypothesis. The closest reference length is referred to as *r* variable
- from the brevity penalty formula in Papineni et. al. (2002)
-
- :param references: A list of reference translations.
- :type references: list(list(str))
- :param hyp_len: The length of the hypothesis.
- :type hyp_len: int
- :return: The length of the reference that's closest to the hypothesis.
- :rtype: int
- """
- ref_lens = (len(reference) for reference in references)
- closest_ref_len = min(
- ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
- )
- return closest_ref_len
-
-
-def brevity_penalty(closest_ref_len, hyp_len):
- """
- Calculate brevity penalty.
-
- As the modified n-gram precision still has the problem from the short
- length sentence, brevity penalty is used to modify the overall BLEU
- score according to length.
-
- An example from the paper. There are three references with length 12, 15
- and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
-
- >>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
- >>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
- >>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
- >>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
- >>> references = [reference1, reference2, reference3]
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> brevity_penalty(closest_ref_len, hyp_len)
- 1.0
-
- In case a hypothesis translation is shorter than the references, penalty is
- applied.
-
- >>> references = [['a'] * 28, ['a'] * 28]
- >>> hypothesis = ['a'] * 12
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> brevity_penalty(closest_ref_len, hyp_len)
- 0.2635971381157267
-
- The length of the closest reference is used to compute the penalty. If the
- length of a hypothesis is 12, and the reference lengths are 13 and 2, the
- penalty is applied because the hypothesis length (12) is less then the
- closest reference length (13).
-
- >>> references = [['a'] * 13, ['a'] * 2]
- >>> hypothesis = ['a'] * 12
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
- 0.9200...
-
- The brevity penalty doesn't depend on reference order. More importantly,
- when two reference sentences are at the same distance, the shortest
- reference sentence length is used.
-
- >>> references = [['a'] * 13, ['a'] * 11]
- >>> hypothesis = ['a'] * 12
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
- >>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
- >>> bp1 == bp2 == 1
- True
-
- A test example from mteval-v13a.pl (starting from the line 705):
-
- >>> references = [['a'] * 11, ['a'] * 8]
- >>> hypothesis = ['a'] * 7
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
- 0.8668...
-
- >>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
- >>> hypothesis = ['a'] * 7
- >>> hyp_len = len(hypothesis)
- >>> closest_ref_len = closest_ref_length(references, hyp_len)
- >>> brevity_penalty(closest_ref_len, hyp_len)
- 1.0
-
- :param hyp_len: The length of the hypothesis for a single sentence OR the
- sum of all the hypotheses' lengths for a corpus
- :type hyp_len: int
- :param closest_ref_len: The length of the closest reference for a single
- hypothesis OR the sum of all the closest references for every hypotheses.
- :type closest_ref_len: int
- :return: BLEU's brevity penalty.
- :rtype: float
- """
- if hyp_len > closest_ref_len:
- return 1
- # If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
- elif hyp_len == 0:
- return 0
- else:
- return math.exp(1 - closest_ref_len / hyp_len)
-
-
-class SmoothingFunction:
- """
- This is an implementation of the smoothing techniques
- for segment-level BLEU scores that was presented in
- Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
- Smoothing Techniques for Sentence-Level BLEU. In WMT14.
- http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
- """
-
- def __init__(self, epsilon=0.1, alpha=5, k=5):
- """
- This will initialize the parameters required for the various smoothing
- techniques, the default values are set to the numbers used in the
- experiments from Chen and Cherry (2014).
-
- >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
- ... 'that', 'the', 'military', 'always', 'obeys', 'the',
- ... 'commands', 'of', 'the', 'party']
- >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
- ... 'that', 'the', 'military', 'will', 'forever', 'heed',
- ... 'Party', 'commands']
-
- >>> chencherry = SmoothingFunction()
- >>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
- 0.4118...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
- 0.4118...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
- 0.4118...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
- 0.4452...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
- 0.4118...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
- 0.4118...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
- 0.4905...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
- 0.4135...
- >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
- 0.4905...
-
- :param epsilon: the epsilon value use in method 1
- :type epsilon: float
- :param alpha: the alpha value use in method 6
- :type alpha: int
- :param k: the k value use in method 4
- :type k: int
- """
- self.epsilon = epsilon
- self.alpha = alpha
- self.k = k
-
- def method0(self, p_n, *args, **kwargs):
- """
- No smoothing.
- """
- p_n_new = []
- for i, p_i in enumerate(p_n):
- if p_i.numerator != 0:
- p_n_new.append(p_i)
- else:
- _msg = str(
- "\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
- "Therefore the BLEU score evaluates to 0, independently of\n"
- "how many N-gram overlaps of lower order it contains.\n"
- "Consider using lower n-gram order or use "
- "SmoothingFunction()"
- ).format(i + 1)
- warnings.warn(_msg)
- # When numerator==0 where denonminator==0 or !=0, the result
- # for the precision score should be equal to 0 or undefined.
- # Due to BLEU geometric mean computation in logarithm space,
- # we we need to take the return sys.float_info.min such that
- # math.log(sys.float_info.min) returns a 0 precision score.
- p_n_new.append(sys.float_info.min)
- return p_n_new
-
- def method1(self, p_n, *args, **kwargs):
- """
- Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
- """
- return [
- (p_i.numerator + self.epsilon) / p_i.denominator
- if p_i.numerator == 0
- else p_i
- for p_i in p_n
- ]
-
- def method2(self, p_n, *args, **kwargs):
- """
- Smoothing method 2: Add 1 to both numerator and denominator from
- Chin-Yew Lin and Franz Josef Och (2004) ORANGE: a Method for
- Evaluating Automatic Evaluation Metrics for Machine Translation.
- In COLING 2004.
- """
- return [
- Fraction(p_n[i].numerator + 1, p_n[i].denominator + 1, _normalize=False)
- if i != 0
- else p_n[0]
- for i in range(len(p_n))
- ]
-
- def method3(self, p_n, *args, **kwargs):
- """
- Smoothing method 3: NIST geometric sequence smoothing
- The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
- precision score whose matching n-gram count is null.
- k is 1 for the first 'n' value for which the n-gram match count is null/
-
- For example, if the text contains:
-
- - one 2-gram match
- - and (consequently) two 1-gram matches
-
- the n-gram count for each individual precision score would be:
-
- - n=1 => prec_count = 2 (two unigrams)
- - n=2 => prec_count = 1 (one bigram)
- - n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
- - n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
- """
- incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
- for i, p_i in enumerate(p_n):
- if p_i.numerator == 0:
- p_n[i] = 1 / (2**incvnt * p_i.denominator)
- incvnt += 1
- return p_n
-
- def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
- """
- Smoothing method 4:
- Shorter translations may have inflated precision values due to having
- smaller denominators; therefore, we give them proportionally
- smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
- suggests dividing by 1/ln(len(T)), where T is the length of the translation.
- """
- incvnt = 1
- hyp_len = hyp_len if hyp_len else len(hypothesis)
- for i, p_i in enumerate(p_n):
- if p_i.numerator == 0 and hyp_len > 1:
- # incvnt = i + 1 * self.k / math.log(
- # hyp_len
- # ) # Note that this K is different from the K from NIST.
- # p_n[i] = incvnt / p_i.denominator\
- numerator = 1 / (2**incvnt * self.k / math.log(hyp_len))
- p_n[i] = numerator / p_i.denominator
- incvnt += 1
- return p_n
-
- def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
- """
- Smoothing method 5:
- The matched counts for similar values of n should be similar. To a
- calculate the n-gram matched count, it averages the n1, n and n+1 gram
- matched counts.
- """
- hyp_len = hyp_len if hyp_len else len(hypothesis)
- m = {}
- # Requires an precision value for an addition ngram order.
- p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
- m[-1] = p_n[0] + 1
- for i, p_i in enumerate(p_n):
- p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
- m[i] = p_n[i]
- return p_n
-
- def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
- """
- Smoothing method 6:
- Interpolates the maximum likelihood estimate of the precision *p_n* with
- a prior estimate *pi0*. The prior is estimated by assuming that the ratio
- between pn and pn1 will be the same as that between pn1 and pn2; from
- Gao and He (2013) Training MRF-Based Phrase Translation Models using
- Gradient Ascent. In NAACL.
- """
- hyp_len = hyp_len if hyp_len else len(hypothesis)
- # This smoothing only works when p_1 and p_2 is non-zero.
- # Raise an error with an appropriate message when the input is too short
- # to use this smoothing technique.
- assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
- for i, p_i in enumerate(p_n):
- if i in [0, 1]: # Skips the first 2 orders of ngrams.
- continue
- else:
- pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
- # No. of ngrams in translation that matches the reference.
- m = p_i.numerator
- # No. of ngrams in translation.
- l = sum(1 for _ in ngrams(hypothesis, i + 1))
- # Calculates the interpolated precision.
- p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
- return p_n
-
- def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
- """
- Smoothing method 7:
- Interpolates methods 4 and 5.
- """
- hyp_len = hyp_len if hyp_len else len(hypothesis)
- p_n = self.method4(p_n, references, hypothesis, hyp_len)
- p_n = self.method5(p_n, references, hypothesis, hyp_len)
- return p_n
+# Natural Language Toolkit: BLEU Score
+#
+# Copyright (C) 2001-2023 NLTK Project
+# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
+# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
+# URL: <https://www.nltk.org/>
+# For license information, see LICENSE.TXT
+
+"""BLEU score implementation."""
+import math
+import sys
+import warnings
+from collections import Counter
+from fractions import Fraction as _Fraction
+
+from nltk.util import ngrams
+
+
+class Fraction(_Fraction):
+ """Fraction with _normalize=False support for 3.12"""
+
+ def __new__(cls, numerator=0, denominator=None, _normalize=False):
+ if sys.version_info >= (3, 12):
+ self = super().__new__(cls, numerator, denominator)
+ else:
+ self = super().__new__(cls, numerator, denominator, _normalize=_normalize)
+ self._normalize = _normalize
+ self._original_numerator = numerator
+ self._original_denominator = denominator
+ return self
+
+ @property
+ def numerator(self):
+ if not self._normalize:
+ return self._original_numerator
+ return super().numerator
+
+ @property
+ def denominator(self):
+ if not self._normalize:
+ return self._original_denominator
+ return super().denominator
+
+
+def sentence_bleu(
+ references,
+ hypothesis,
+ weights=(0.25, 0.25, 0.25, 0.25),
+ smoothing_function=None,
+ auto_reweigh=False,
+):
+ """
+ Calculate BLEU score (Bilingual Evaluation Understudy) from
+ Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
+ "BLEU: a method for automatic evaluation of machine translation."
+ In Proceedings of ACL. https://www.aclweb.org/anthology/P02-1040.pdf
+
+ >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
+ ... 'ensures', 'that', 'the', 'military', 'always',
+ ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
+
+ >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
+ ... 'forever', 'hearing', 'the', 'activity', 'guidebook',
+ ... 'that', 'party', 'direct']
+
+ >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
+ ... 'ensures', 'that', 'the', 'military', 'will', 'forever',
+ ... 'heed', 'Party', 'commands']
+
+ >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
+ ... 'guarantees', 'the', 'military', 'forces', 'always',
+ ... 'being', 'under', 'the', 'command', 'of', 'the',
+ ... 'Party']
+
+ >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
+ ... 'army', 'always', 'to', 'heed', 'the', 'directions',
+ ... 'of', 'the', 'party']
+
+ >>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
+ 0.5045...
+
+ If there is no ngrams overlap for any order of n-grams, BLEU returns the
+ value 0. This is because the precision for the order of n-grams without
+ overlap is 0, and the geometric mean in the final BLEU score computation
+ multiplies the 0 with the precision of other n-grams. This results in 0
+ (independently of the precision of the other n-gram orders). The following
+ example has zero 3-gram and 4-gram overlaps:
+
+ >>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
+ 0.0
+
+ To avoid this harsh behaviour when no ngram overlaps are found a smoothing
+ function can be used.
+
+ >>> chencherry = SmoothingFunction()
+ >>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
+ ... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
+ 0.0370...
+
+ The default BLEU calculates a score for up to 4-grams using uniform
+ weights (this is called BLEU-4). To evaluate your translations with
+ higher/lower order ngrams, use customized weights. E.g. when accounting
+ for up to 5-grams with uniform weights (this is called BLEU-5) use:
+
+ >>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
+ >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
+ 0.3920...
+
+ Multiple BLEU scores can be computed at once, by supplying a list of weights.
+ E.g. for computing BLEU-2, BLEU-3 *and* BLEU-4 in one computation, use:
+ >>> weights = [
+ ... (1./2., 1./2.),
+ ... (1./3., 1./3., 1./3.),
+ ... (1./4., 1./4., 1./4., 1./4.)
+ ... ]
+ >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
+ [0.7453..., 0.6240..., 0.5045...]
+
+ :param references: reference sentences
+ :type references: list(list(str))
+ :param hypothesis: a hypothesis sentence
+ :type hypothesis: list(str)
+ :param weights: weights for unigrams, bigrams, trigrams and so on (one or a list of weights)
+ :type weights: tuple(float) / list(tuple(float))
+ :param smoothing_function:
+ :type smoothing_function: SmoothingFunction
+ :param auto_reweigh: Option to re-normalize the weights uniformly.
+ :type auto_reweigh: bool
+ :return: The sentence-level BLEU score. Returns a list if multiple weights were supplied.
+ :rtype: float / list(float)
+ """
+ return corpus_bleu(
+ [references], [hypothesis], weights, smoothing_function, auto_reweigh
+ )
+
+
+def corpus_bleu(
+ list_of_references,
+ hypotheses,
+ weights=(0.25, 0.25, 0.25, 0.25),
+ smoothing_function=None,
+ auto_reweigh=False,
+):
+ """
+ Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
+ the hypotheses and their respective references.
+
+ Instead of averaging the sentence level BLEU scores (i.e. macro-average
+ precision), the original BLEU metric (Papineni et al. 2002) accounts for
+ the micro-average precision (i.e. summing the numerators and denominators
+ for each hypothesis-reference(s) pairs before the division).
+
+ >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
+ ... 'ensures', 'that', 'the', 'military', 'always',
+ ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
+ >>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
+ ... 'ensures', 'that', 'the', 'military', 'will', 'forever',
+ ... 'heed', 'Party', 'commands']
+ >>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
+ ... 'guarantees', 'the', 'military', 'forces', 'always',
+ ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
+ >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
+ ... 'army', 'always', 'to', 'heed', 'the', 'directions',
+ ... 'of', 'the', 'party']
+
+ >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
+ ... 'interested', 'in', 'world', 'history']
+ >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
+ ... 'because', 'he', 'read', 'the', 'book']
+
+ >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
+ >>> hypotheses = [hyp1, hyp2]
+ >>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
+ 0.5920...
+
+ The example below show that corpus_bleu() is different from averaging
+ sentence_bleu() for hypotheses
+
+ >>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
+ >>> score2 = sentence_bleu([ref2a], hyp2)
+ >>> (score1 + score2) / 2 # doctest: +ELLIPSIS
+ 0.6223...
+
+ Custom weights may be supplied to fine-tune the BLEU score further.
+ A tuple of float weights for unigrams, bigrams, trigrams and so on can be given.
+ >>> weights = (0.1, 0.3, 0.5, 0.1)
+ >>> corpus_bleu(list_of_references, hypotheses, weights=weights) # doctest: +ELLIPSIS
+ 0.5818...
+
+ This particular weight gave extra value to trigrams.
+ Furthermore, multiple weights can be given, resulting in multiple BLEU scores.
+ >>> weights = [
+ ... (0.5, 0.5),
+ ... (0.333, 0.333, 0.334),
+ ... (0.25, 0.25, 0.25, 0.25),
+ ... (0.2, 0.2, 0.2, 0.2, 0.2)
+ ... ]
+ >>> corpus_bleu(list_of_references, hypotheses, weights=weights) # doctest: +ELLIPSIS
+ [0.8242..., 0.7067..., 0.5920..., 0.4719...]
+
+ :param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
+ :type list_of_references: list(list(list(str)))
+ :param hypotheses: a list of hypothesis sentences
+ :type hypotheses: list(list(str))
+ :param weights: weights for unigrams, bigrams, trigrams and so on (one or a list of weights)
+ :type weights: tuple(float) / list(tuple(float))
+ :param smoothing_function:
+ :type smoothing_function: SmoothingFunction
+ :param auto_reweigh: Option to re-normalize the weights uniformly.
+ :type auto_reweigh: bool
+ :return: The corpus-level BLEU score.
+ :rtype: float
+ """
+ # Before proceeding to compute BLEU, perform sanity checks.
+
+ p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
+ p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
+ hyp_lengths, ref_lengths = 0, 0
+
+ assert len(list_of_references) == len(hypotheses), (
+ "The number of hypotheses and their reference(s) should be the " "same "
+ )
+
+ try:
+ weights[0][0]
+ except TypeError:
+ weights = [weights]
+ max_weight_length = max(len(weight) for weight in weights)
+
+ # Iterate through each hypothesis and their corresponding references.
+ for references, hypothesis in zip(list_of_references, hypotheses):
+ # For each order of ngram, calculate the numerator and
+ # denominator for the corpus-level modified precision.
+ for i in range(1, max_weight_length + 1):
+ p_i = modified_precision(references, hypothesis, i)
+ p_numerators[i] += p_i.numerator
+ p_denominators[i] += p_i.denominator
+
+ # Calculate the hypothesis length and the closest reference length.
+ # Adds them to the corpus-level hypothesis and reference counts.
+ hyp_len = len(hypothesis)
+ hyp_lengths += hyp_len
+ ref_lengths += closest_ref_length(references, hyp_len)
+
+ # Calculate corpus-level brevity penalty.
+ bp = brevity_penalty(ref_lengths, hyp_lengths)
+
+ # Collects the various precision values for the different ngram orders.
+ p_n = [
+ Fraction(p_numerators[i], p_denominators[i], _normalize=False)
+ for i in range(1, max_weight_length + 1)
+ ]
+
+ # Returns 0 if there's no matching n-grams
+ # We only need to check for p_numerators[1] == 0, since if there's
+ # no unigrams, there won't be any higher order ngrams.
+ if p_numerators[1] == 0:
+ return 0 if len(weights) == 1 else [0] * len(weights)
+
+ # If there's no smoothing, set use method0 from SmoothinFunction class.
+ if not smoothing_function:
+ smoothing_function = SmoothingFunction().method0
+ # Smoothen the modified precision.
+ # Note: smoothing_function() may convert values into floats;
+ # it tries to retain the Fraction object as much as the
+ # smoothing method allows.
+ p_n = smoothing_function(
+ p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
+ )
+
+ bleu_scores = []
+ for weight in weights:
+ # Uniformly re-weighting based on maximum hypothesis lengths if largest
+ # order of n-grams < 4 and weights is set at default.
+ if auto_reweigh:
+ if hyp_lengths < 4 and weight == (0.25, 0.25, 0.25, 0.25):
+ weight = (1 / hyp_lengths,) * hyp_lengths
+
+ s = (w_i * math.log(p_i) for w_i, p_i in zip(weight, p_n) if p_i > 0)
+ s = bp * math.exp(math.fsum(s))
+ bleu_scores.append(s)
+ return bleu_scores[0] if len(weights) == 1 else bleu_scores
+
+
+def modified_precision(references, hypothesis, n):
+ """
+ Calculate modified ngram precision.
+
+ The normal precision method may lead to some wrong translations with
+ high-precision, e.g., the translation, in which a word of reference
+ repeats several times, has very high precision.
+
+ This function only returns the Fraction object that contains the numerator
+ and denominator necessary to calculate the corpus-level precision.
+ To calculate the modified precision for a single pair of hypothesis and
+ references, cast the Fraction object into a float.
+
+ The famous "the the the ... " example shows that you can get BLEU precision
+ by duplicating high frequency words.
+
+ >>> reference1 = 'the cat is on the mat'.split()
+ >>> reference2 = 'there is a cat on the mat'.split()
+ >>> hypothesis1 = 'the the the the the the the'.split()
+ >>> references = [reference1, reference2]
+ >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
+ 0.2857...
+
+ In the modified n-gram precision, a reference word will be considered
+ exhausted after a matching hypothesis word is identified, e.g.
+
+ >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
+ ... 'ensures', 'that', 'the', 'military', 'will',
+ ... 'forever', 'heed', 'Party', 'commands']
+ >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
+ ... 'guarantees', 'the', 'military', 'forces', 'always',
+ ... 'being', 'under', 'the', 'command', 'of', 'the',
+ ... 'Party']
+ >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
+ ... 'army', 'always', 'to', 'heed', 'the', 'directions',
+ ... 'of', 'the', 'party']
+ >>> hypothesis = 'of the'.split()
+ >>> references = [reference1, reference2, reference3]
+ >>> float(modified_precision(references, hypothesis, n=1))
+ 1.0
+ >>> float(modified_precision(references, hypothesis, n=2))
+ 1.0
+
+ An example of a normal machine translation hypothesis:
+
+ >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
+ ... 'ensures', 'that', 'the', 'military', 'always',
+ ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
+
+ >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
+ ... 'forever', 'hearing', 'the', 'activity', 'guidebook',
+ ... 'that', 'party', 'direct']
+
+ >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
+ ... 'ensures', 'that', 'the', 'military', 'will',
+ ... 'forever', 'heed', 'Party', 'commands']
+
+ >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
+ ... 'guarantees', 'the', 'military', 'forces', 'always',
+ ... 'being', 'under', 'the', 'command', 'of', 'the',
+ ... 'Party']
+
+ >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
+ ... 'army', 'always', 'to', 'heed', 'the', 'directions',
+ ... 'of', 'the', 'party']
+ >>> references = [reference1, reference2, reference3]
+ >>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
+ 0.9444...
+ >>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
+ 0.5714...
+ >>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
+ 0.5882352941176471
+ >>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
+ 0.07692...
+
+
+ :param references: A list of reference translations.
+ :type references: list(list(str))
+ :param hypothesis: A hypothesis translation.
+ :type hypothesis: list(str)
+ :param n: The ngram order.
+ :type n: int
+ :return: BLEU's modified precision for the nth order ngram.
+ :rtype: Fraction
+ """
+ # Extracts all ngrams in hypothesis
+ # Set an empty Counter if hypothesis is empty.
+ counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
+ # Extract a union of references' counts.
+ # max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
+ max_counts = {}
+ for reference in references:
+ reference_counts = (
+ Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
+ )
+ for ngram in counts:
+ max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
+
+ # Assigns the intersection between hypothesis and references' counts.
+ clipped_counts = {
+ ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
+ }
+
+ numerator = sum(clipped_counts.values())
+ # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
+ # Usually this happens when the ngram order is > len(reference).
+ denominator = max(1, sum(counts.values()))
+
+ return Fraction(numerator, denominator, _normalize=False)
+
+
+def closest_ref_length(references, hyp_len):
+ """
+ This function finds the reference that is the closest length to the
+ hypothesis. The closest reference length is referred to as *r* variable
+ from the brevity penalty formula in Papineni et. al. (2002)
+
+ :param references: A list of reference translations.
+ :type references: list(list(str))
+ :param hyp_len: The length of the hypothesis.
+ :type hyp_len: int
+ :return: The length of the reference that's closest to the hypothesis.
+ :rtype: int
+ """
+ ref_lens = (len(reference) for reference in references)
+ closest_ref_len = min(
+ ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
+ )
+ return closest_ref_len
+
+
+def brevity_penalty(closest_ref_len, hyp_len):
+ """
+ Calculate brevity penalty.
+
+ As the modified n-gram precision still has the problem from the short
+ length sentence, brevity penalty is used to modify the overall BLEU
+ score according to length.
+
+ An example from the paper. There are three references with length 12, 15
+ and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
+
+ >>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
+ >>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
+ >>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
+ >>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
+ >>> references = [reference1, reference2, reference3]
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> brevity_penalty(closest_ref_len, hyp_len)
+ 1.0
+
+ In case a hypothesis translation is shorter than the references, penalty is
+ applied.
+
+ >>> references = [['a'] * 28, ['a'] * 28]
+ >>> hypothesis = ['a'] * 12
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> brevity_penalty(closest_ref_len, hyp_len)
+ 0.2635971381157267
+
+ The length of the closest reference is used to compute the penalty. If the
+ length of a hypothesis is 12, and the reference lengths are 13 and 2, the
+ penalty is applied because the hypothesis length (12) is less then the
+ closest reference length (13).
+
+ >>> references = [['a'] * 13, ['a'] * 2]
+ >>> hypothesis = ['a'] * 12
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
+ 0.9200...
+
+ The brevity penalty doesn't depend on reference order. More importantly,
+ when two reference sentences are at the same distance, the shortest
+ reference sentence length is used.
+
+ >>> references = [['a'] * 13, ['a'] * 11]
+ >>> hypothesis = ['a'] * 12
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
+ >>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
+ >>> bp1 == bp2 == 1
+ True
+
+ A test example from mteval-v13a.pl (starting from the line 705):
+
+ >>> references = [['a'] * 11, ['a'] * 8]
+ >>> hypothesis = ['a'] * 7
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
+ 0.8668...
+
+ >>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
+ >>> hypothesis = ['a'] * 7
+ >>> hyp_len = len(hypothesis)
+ >>> closest_ref_len = closest_ref_length(references, hyp_len)
+ >>> brevity_penalty(closest_ref_len, hyp_len)
+ 1.0
+
+ :param hyp_len: The length of the hypothesis for a single sentence OR the
+ sum of all the hypotheses' lengths for a corpus
+ :type hyp_len: int
+ :param closest_ref_len: The length of the closest reference for a single
+ hypothesis OR the sum of all the closest references for every hypotheses.
+ :type closest_ref_len: int
+ :return: BLEU's brevity penalty.
+ :rtype: float
+ """
+ if hyp_len > closest_ref_len:
+ return 1
+ # If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
+ elif hyp_len == 0:
+ return 0
+ else:
+ return math.exp(1 - closest_ref_len / hyp_len)
+
+
+class SmoothingFunction:
+ """
+ This is an implementation of the smoothing techniques
+ for segment-level BLEU scores that was presented in
+ Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
+ Smoothing Techniques for Sentence-Level BLEU. In WMT14.
+ http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
+ """
+
+ def __init__(self, epsilon=0.1, alpha=5, k=5):
+ """
+ This will initialize the parameters required for the various smoothing
+ techniques, the default values are set to the numbers used in the
+ experiments from Chen and Cherry (2014).
+
+ >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
+ ... 'that', 'the', 'military', 'always', 'obeys', 'the',
+ ... 'commands', 'of', 'the', 'party']
+ >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
+ ... 'that', 'the', 'military', 'will', 'forever', 'heed',
+ ... 'Party', 'commands']
+
+ >>> chencherry = SmoothingFunction()
+ >>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
+ 0.4118...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
+ 0.4118...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
+ 0.4118...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
+ 0.4452...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
+ 0.4118...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
+ 0.4118...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
+ 0.4905...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
+ 0.4135...
+ >>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
+ 0.4905...
+
+ :param epsilon: the epsilon value use in method 1
+ :type epsilon: float
+ :param alpha: the alpha value use in method 6
+ :type alpha: int
+ :param k: the k value use in method 4
+ :type k: int
+ """
+ self.epsilon = epsilon
+ self.alpha = alpha
+ self.k = k
+
+ def method0(self, p_n, *args, **kwargs):
+ """
+ No smoothing.
+ """
+ p_n_new = []
+ for i, p_i in enumerate(p_n):
+ if p_i.numerator != 0:
+ p_n_new.append(p_i)
+ else:
+ _msg = str(
+ "\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
+ "Therefore the BLEU score evaluates to 0, independently of\n"
+ "how many N-gram overlaps of lower order it contains.\n"
+ "Consider using lower n-gram order or use "
+ "SmoothingFunction()"
+ ).format(i + 1)
+ warnings.warn(_msg)
+ # When numerator==0 where denonminator==0 or !=0, the result
+ # for the precision score should be equal to 0 or undefined.
+ # Due to BLEU geometric mean computation in logarithm space,
+ # we we need to take the return sys.float_info.min such that
+ # math.log(sys.float_info.min) returns a 0 precision score.
+ p_n_new.append(sys.float_info.min)
+ return p_n_new
+
+ def method1(self, p_n, *args, **kwargs):
+ """
+ Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
+ """
+ return [
+ (p_i.numerator + self.epsilon) / p_i.denominator
+ if p_i.numerator == 0
+ else p_i
+ for p_i in p_n
+ ]
+
+ def method2(self, p_n, *args, **kwargs):
+ """
+ Smoothing method 2: Add 1 to both numerator and denominator from
+ Chin-Yew Lin and Franz Josef Och (2004) ORANGE: a Method for
+ Evaluating Automatic Evaluation Metrics for Machine Translation.
+ In COLING 2004.
+ """
+ return [
+ Fraction(p_n[i].numerator + 1, p_n[i].denominator + 1, _normalize=False)
+ if i != 0
+ else p_n[0]
+ for i in range(len(p_n))
+ ]
+
+ def method3(self, p_n, *args, **kwargs):
+ """
+ Smoothing method 3: NIST geometric sequence smoothing
+ The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
+ precision score whose matching n-gram count is null.
+ k is 1 for the first 'n' value for which the n-gram match count is null/
+
+ For example, if the text contains:
+
+ - one 2-gram match
+ - and (consequently) two 1-gram matches
+
+ the n-gram count for each individual precision score would be:
+
+ - n=1 => prec_count = 2 (two unigrams)
+ - n=2 => prec_count = 1 (one bigram)
+ - n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
+ - n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
+ """
+ incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
+ for i, p_i in enumerate(p_n):
+ if p_i.numerator == 0:
+ p_n[i] = 1 / (2**incvnt * p_i.denominator)
+ incvnt += 1
+ return p_n
+
+ def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
+ """
+ Smoothing method 4:
+ Shorter translations may have inflated precision values due to having
+ smaller denominators; therefore, we give them proportionally
+ smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
+ suggests dividing by 1/ln(len(T)), where T is the length of the translation.
+ """
+ incvnt = 1
+ hyp_len = hyp_len if hyp_len else len(hypothesis)
+ for i, p_i in enumerate(p_n):
+ if p_i.numerator == 0 and hyp_len > 1:
+ # incvnt = i + 1 * self.k / math.log(
+ # hyp_len
+ # ) # Note that this K is different from the K from NIST.
+ # p_n[i] = incvnt / p_i.denominator\
+ numerator = 1 / (2**incvnt * self.k / math.log(hyp_len))
+ p_n[i] = numerator / p_i.denominator
+ incvnt += 1
+ return p_n
+
+ def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
+ """
+ Smoothing method 5:
+ The matched counts for similar values of n should be similar. To a
+ calculate the n-gram matched count, it averages the n1, n and n+1 gram
+ matched counts.
+ """
+ hyp_len = hyp_len if hyp_len else len(hypothesis)
+ m = {}
+ # Requires an precision value for an addition ngram order.
+ p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
+ m[-1] = p_n[0] + 1
+ for i, p_i in enumerate(p_n):
+ p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
+ m[i] = p_n[i]
+ return p_n
+
+ def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
+ """
+ Smoothing method 6:
+ Interpolates the maximum likelihood estimate of the precision *p_n* with
+ a prior estimate *pi0*. The prior is estimated by assuming that the ratio
+ between pn and pn1 will be the same as that between pn1 and pn2; from
+ Gao and He (2013) Training MRF-Based Phrase Translation Models using
+ Gradient Ascent. In NAACL.
+ """
+ hyp_len = hyp_len if hyp_len else len(hypothesis)
+ # This smoothing only works when p_1 and p_2 is non-zero.
+ # Raise an error with an appropriate message when the input is too short
+ # to use this smoothing technique.
+ assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
+ for i, p_i in enumerate(p_n):
+ if i in [0, 1]: # Skips the first 2 orders of ngrams.
+ continue
+ else:
+ pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
+ # No. of ngrams in translation that matches the reference.
+ m = p_i.numerator
+ # No. of ngrams in translation.
+ l = sum(1 for _ in ngrams(hypothesis, i + 1))
+ # Calculates the interpolated precision.
+ p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
+ return p_n
+
+ def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
+ """
+ Smoothing method 7:
+ Interpolates methods 4 and 5.
+ """
+ hyp_len = hyp_len if hyp_len else len(hypothesis)
+ p_n = self.method4(p_n, references, hypothesis, hyp_len)
+ p_n = self.method5(p_n, references, hypothesis, hyp_len)
+ return p_n
Index: nltk-3.8.1/README.md
===================================================================
--- nltk-3.8.1.orig/README.md
+++ nltk-3.8.1/README.md
@@ -1,50 +1,50 @@
-# Natural Language Toolkit (NLTK)
-[![PyPI](https://img.shields.io/pypi/v/nltk.svg)](https://pypi.python.org/pypi/nltk)
-![CI](https://github.com/nltk/nltk/actions/workflows/ci.yaml/badge.svg?branch=develop)
-
-NLTK -- the Natural Language Toolkit -- is a suite of open source Python
-modules, data sets, and tutorials supporting research and development in Natural
-Language Processing. NLTK requires Python version 3.7, 3.8, 3.9, 3.10 or 3.11.
-
-For documentation, please visit [nltk.org](https://www.nltk.org/).
-
-
-## Contributing
-
-Do you want to contribute to NLTK development? Great!
-Please read [CONTRIBUTING.md](CONTRIBUTING.md) for more details.
-
-See also [how to contribute to NLTK](https://www.nltk.org/contribute.html).
-
-
-## Donate
-
-Have you found the toolkit helpful? Please support NLTK development by donating
-to the project via PayPal, using the link on the NLTK homepage.
-
-
-## Citing
-
-If you publish work that uses NLTK, please cite the NLTK book, as follows:
-
- Bird, Steven, Edward Loper and Ewan Klein (2009).
- Natural Language Processing with Python. O'Reilly Media Inc.
-
-
-## Copyright
-
-Copyright (C) 2001-2023 NLTK Project
-
-For license information, see [LICENSE.txt](LICENSE.txt).
-
-[AUTHORS.md](AUTHORS.md) contains a list of everyone who has contributed to NLTK.
-
-
-### Redistributing
-
-- NLTK source code is distributed under the Apache 2.0 License.
-- NLTK documentation is distributed under the Creative Commons
- Attribution-Noncommercial-No Derivative Works 3.0 United States license.
-- NLTK corpora are provided under the terms given in the README file for each
- corpus; all are redistributable and available for non-commercial use.
-- NLTK may be freely redistributed, subject to the provisions of these licenses.
+# Natural Language Toolkit (NLTK)
+[![PyPI](https://img.shields.io/pypi/v/nltk.svg)](https://pypi.python.org/pypi/nltk)
+![CI](https://github.com/nltk/nltk/actions/workflows/ci.yaml/badge.svg?branch=develop)
+
+NLTK -- the Natural Language Toolkit -- is a suite of open source Python
+modules, data sets, and tutorials supporting research and development in Natural
+Language Processing. NLTK requires Python version 3.7, 3.8, 3.9, 3.10, 3.11 or 3.12.
+
+For documentation, please visit [nltk.org](https://www.nltk.org/).
+
+
+## Contributing
+
+Do you want to contribute to NLTK development? Great!
+Please read [CONTRIBUTING.md](CONTRIBUTING.md) for more details.
+
+See also [how to contribute to NLTK](https://www.nltk.org/contribute.html).
+
+
+## Donate
+
+Have you found the toolkit helpful? Please support NLTK development by donating
+to the project via PayPal, using the link on the NLTK homepage.
+
+
+## Citing
+
+If you publish work that uses NLTK, please cite the NLTK book, as follows:
+
+ Bird, Steven, Edward Loper and Ewan Klein (2009).
+ Natural Language Processing with Python. O'Reilly Media Inc.
+
+
+## Copyright
+
+Copyright (C) 2001-2023 NLTK Project
+
+For license information, see [LICENSE.txt](LICENSE.txt).
+
+[AUTHORS.md](AUTHORS.md) contains a list of everyone who has contributed to NLTK.
+
+
+### Redistributing
+
+- NLTK source code is distributed under the Apache 2.0 License.
+- NLTK documentation is distributed under the Creative Commons
+ Attribution-Noncommercial-No Derivative Works 3.0 United States license.
+- NLTK corpora are provided under the terms given in the README file for each
+ corpus; all are redistributable and available for non-commercial use.
+- NLTK may be freely redistributed, subject to the provisions of these licenses.
Index: nltk-3.8.1/setup.py
===================================================================
--- nltk-3.8.1.orig/setup.py
+++ nltk-3.8.1/setup.py
@@ -1,125 +1,126 @@
-#!/usr/bin/env python
-#
-# Setup script for the Natural Language Toolkit
-#
-# Copyright (C) 2001-2023 NLTK Project
-# Author: NLTK Team <nltk.team@gmail.com>
-# URL: <https://www.nltk.org/>
-# For license information, see LICENSE.TXT
-
-# Work around mbcs bug in distutils.
-# https://bugs.python.org/issue10945
-import codecs
-
-try:
- codecs.lookup("mbcs")
-except LookupError:
- ascii = codecs.lookup("ascii")
- func = lambda name, enc=ascii: {True: enc}.get(name == "mbcs")
- codecs.register(func)
-
-import os
-
-# Use the VERSION file to get NLTK version
-version_file = os.path.join(os.path.dirname(__file__), "nltk", "VERSION")
-with open(version_file) as fh:
- nltk_version = fh.read().strip()
-
-# setuptools
-from setuptools import find_packages, setup
-
-# Specify groups of optional dependencies
-extras_require = {
- "machine_learning": [
- "numpy",
- "python-crfsuite",
- "scikit-learn",
- "scipy",
- ],
- "plot": ["matplotlib"],
- "tgrep": ["pyparsing"],
- "twitter": ["twython"],
- "corenlp": ["requests"],
-}
-
-# Add a group made up of all optional dependencies
-extras_require["all"] = {
- package for group in extras_require.values() for package in group
-}
-
-# Adds CLI commands
-console_scripts = """
-[console_scripts]
-nltk=nltk.cli:cli
-"""
-
-_project_homepage = "https://www.nltk.org/"
-
-setup(
- name="nltk",
- description="Natural Language Toolkit",
- version=nltk_version,
- url=_project_homepage,
- project_urls={
- "Documentation": _project_homepage,
- "Source Code": "https://github.com/nltk/nltk",
- "Issue Tracker": "https://github.com/nltk/nltk/issues",
- },
- long_description="""\
-The Natural Language Toolkit (NLTK) is a Python package for
-natural language processing. NLTK requires Python 3.7, 3.8, 3.9, 3.10 or 3.11.""",
- license="Apache License, Version 2.0",
- keywords=[
- "NLP",
- "CL",
- "natural language processing",
- "computational linguistics",
- "parsing",
- "tagging",
- "tokenizing",
- "syntax",
- "linguistics",
- "language",
- "natural language",
- "text analytics",
- ],
- maintainer="NLTK Team",
- maintainer_email="nltk.team@gmail.com",
- author="NLTK Team",
- author_email="nltk.team@gmail.com",
- classifiers=[
- "Development Status :: 5 - Production/Stable",
- "Intended Audience :: Developers",
- "Intended Audience :: Education",
- "Intended Audience :: Information Technology",
- "Intended Audience :: Science/Research",
- "License :: OSI Approved :: Apache Software License",
- "Operating System :: OS Independent",
- "Programming Language :: Python :: 3.7",
- "Programming Language :: Python :: 3.8",
- "Programming Language :: Python :: 3.9",
- "Programming Language :: Python :: 3.10",
- "Programming Language :: Python :: 3.11",
- "Topic :: Scientific/Engineering",
- "Topic :: Scientific/Engineering :: Artificial Intelligence",
- "Topic :: Scientific/Engineering :: Human Machine Interfaces",
- "Topic :: Scientific/Engineering :: Information Analysis",
- "Topic :: Text Processing",
- "Topic :: Text Processing :: Filters",
- "Topic :: Text Processing :: General",
- "Topic :: Text Processing :: Indexing",
- "Topic :: Text Processing :: Linguistic",
- ],
- package_data={"nltk": ["test/*.doctest", "VERSION"]},
- python_requires=">=3.7",
- install_requires=[
- "click",
- "joblib",
- "regex>=2021.8.3",
- "tqdm",
- ],
- extras_require=extras_require,
- packages=find_packages(),
- zip_safe=False, # since normal files will be present too?
- entry_points=console_scripts,
-)
+#!/usr/bin/env python
+#
+# Setup script for the Natural Language Toolkit
+#
+# Copyright (C) 2001-2023 NLTK Project
+# Author: NLTK Team <nltk.team@gmail.com>
+# URL: <https://www.nltk.org/>
+# For license information, see LICENSE.TXT
+
+# Work around mbcs bug in distutils.
+# https://bugs.python.org/issue10945
+import codecs
+
+try:
+ codecs.lookup("mbcs")
+except LookupError:
+ ascii = codecs.lookup("ascii")
+ func = lambda name, enc=ascii: {True: enc}.get(name == "mbcs")
+ codecs.register(func)
+
+import os
+
+# Use the VERSION file to get NLTK version
+version_file = os.path.join(os.path.dirname(__file__), "nltk", "VERSION")
+with open(version_file) as fh:
+ nltk_version = fh.read().strip()
+
+# setuptools
+from setuptools import find_packages, setup
+
+# Specify groups of optional dependencies
+extras_require = {
+ "machine_learning": [
+ "numpy",
+ "python-crfsuite",
+ "scikit-learn",
+ "scipy",
+ ],
+ "plot": ["matplotlib"],
+ "tgrep": ["pyparsing"],
+ "twitter": ["twython"],
+ "corenlp": ["requests"],
+}
+
+# Add a group made up of all optional dependencies
+extras_require["all"] = {
+ package for group in extras_require.values() for package in group
+}
+
+# Adds CLI commands
+console_scripts = """
+[console_scripts]
+nltk=nltk.cli:cli
+"""
+
+_project_homepage = "https://www.nltk.org/"
+
+setup(
+ name="nltk",
+ description="Natural Language Toolkit",
+ version=nltk_version,
+ url=_project_homepage,
+ project_urls={
+ "Documentation": _project_homepage,
+ "Source Code": "https://github.com/nltk/nltk",
+ "Issue Tracker": "https://github.com/nltk/nltk/issues",
+ },
+ long_description="""\
+The Natural Language Toolkit (NLTK) is a Python package for
+natural language processing. NLTK requires Python 3.7, 3.8, 3.9, 3.10, 3.11 or 3.12.""",
+ license="Apache License, Version 2.0",
+ keywords=[
+ "NLP",
+ "CL",
+ "natural language processing",
+ "computational linguistics",
+ "parsing",
+ "tagging",
+ "tokenizing",
+ "syntax",
+ "linguistics",
+ "language",
+ "natural language",
+ "text analytics",
+ ],
+ maintainer="NLTK Team",
+ maintainer_email="nltk.team@gmail.com",
+ author="NLTK Team",
+ author_email="nltk.team@gmail.com",
+ classifiers=[
+ "Development Status :: 5 - Production/Stable",
+ "Intended Audience :: Developers",
+ "Intended Audience :: Education",
+ "Intended Audience :: Information Technology",
+ "Intended Audience :: Science/Research",
+ "License :: OSI Approved :: Apache Software License",
+ "Operating System :: OS Independent",
+ "Programming Language :: Python :: 3.7",
+ "Programming Language :: Python :: 3.8",
+ "Programming Language :: Python :: 3.9",
+ "Programming Language :: Python :: 3.10",
+ "Programming Language :: Python :: 3.11",
+ "Programming Language :: Python :: 3.12",
+ "Topic :: Scientific/Engineering",
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
+ "Topic :: Scientific/Engineering :: Human Machine Interfaces",
+ "Topic :: Scientific/Engineering :: Information Analysis",
+ "Topic :: Text Processing",
+ "Topic :: Text Processing :: Filters",
+ "Topic :: Text Processing :: General",
+ "Topic :: Text Processing :: Indexing",
+ "Topic :: Text Processing :: Linguistic",
+ ],
+ package_data={"nltk": ["test/*.doctest", "VERSION"]},
+ python_requires=">=3.7",
+ install_requires=[
+ "click",
+ "joblib",
+ "regex>=2021.8.3",
+ "tqdm",
+ ],
+ extras_require=extras_require,
+ packages=find_packages(),
+ zip_safe=False, # since normal files will be present too?
+ entry_points=console_scripts,
+)