--- pandas-2.0.2/pandas/tests/frame/indexing/test_setitem.py.orig 2023-06-22 09:00:10.272775300 +0200 +++ pandas-2.0.2/pandas/tests/frame/indexing/test_setitem.py 2023-06-22 09:00:48.663682100 +0200 @@ -61,7 +61,8 @@ class TestDataFrameSetItem: "dtype", ["int32", "int64", "uint32", "uint64", "float32", "float64"] ) def test_setitem_dtype(self, dtype, float_frame): - arr = np.random.randn(len(float_frame)) + # Use randint since casting negative floats to uints is undefined + arr = np.random.randint(1, 10, len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype --- pandas-2.0.2/pandas/tests/series/methods/test_nlargest.py.orig 2023-06-22 09:02:58.788342500 +0200 +++ pandas-2.0.2/pandas/tests/series/methods/test_nlargest.py 2023-06-22 09:03:26.743975800 +0200 @@ -217,7 +217,12 @@ class TestSeriesNLargestNSmallest: def test_nlargest_nullable(self, any_numeric_ea_dtype): # GH#42816 dtype = any_numeric_ea_dtype - arr = np.random.randn(10).astype(dtype.lower(), copy=False) + if dtype.startswith("UInt"): + # Can't cast from negative float to uint on some platforms + arr = np.random.randint(1, 10, 10) + else: + arr = np.random.randn(10) + arr = arr.astype(dtype.lower(), copy=False) ser = Series(arr.copy(), dtype=dtype) ser[1] = pd.NA