2015-02-13 Joseph Myers [BZ #17967] * sysdeps/powerpc/fpu/e_sqrtf.c (__slow_ieee754_sqrtf): Use __builtin_fmaf instead of relying on contraction of a * b + c. 2015-02-12 Joseph Myers [BZ #17964] * sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Use __builtin_fma instead of relying on contraction of a * b + c. Index: glibc-2.21/sysdeps/powerpc/fpu/e_sqrt.c =================================================================== --- glibc-2.21.orig/sysdeps/powerpc/fpu/e_sqrt.c +++ glibc-2.21/sysdeps/powerpc/fpu/e_sqrt.c @@ -99,38 +99,41 @@ __slow_ieee754_sqrt (double x) /* Here we have three Newton-Raphson iterations each of a division and a square root and the remainder of the argument reduction, all interleaved. */ - sd = -(sg * sg - sx); + sd = -__builtin_fma (sg, sg, -sx); fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000; sy2 = sy + sy; - sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */ + sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to + sqrt(sx). */ /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation between the store and the load. */ INSERT_WORDS (fsg, fsgi, 0); iw_u.parts.msw = fsgi; iw_u.parts.lsw = (0); - e = -(sy * sg - almost_half); - sd = -(sg * sg - sx); + e = -__builtin_fma (sy, sg, -almost_half); + sd = -__builtin_fma (sg, sg, -sx); if ((xi0 & 0x7ff00000) == 0) goto denorm; - sy = sy + e * sy2; - sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx). */ + sy = __builtin_fma (e, sy2, sy); + sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to + sqrt(sx). */ sy2 = sy + sy; /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */ fsg = iw_u.value; - e = -(sy * sg - almost_half); - sd = -(sg * sg - sx); - sy = sy + e * sy2; + e = -__builtin_fma (sy, sg, -almost_half); + sd = -__builtin_fma (sg, sg, -sx); + sy = __builtin_fma (e, sy2, sy); shx = sx * fsg; - sg = sg + sy * sd; /* 64-bit approximation to sqrt(sx), - but perhaps rounded incorrectly. */ + sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to + sqrt(sx), but perhaps + rounded incorrectly. */ sy2 = sy + sy; g = sg * fsg; - e = -(sy * sg - almost_half); - d = -(g * sg - shx); - sy = sy + e * sy2; + e = -__builtin_fma (sy, sg, -almost_half); + d = -__builtin_fma (g, sg, -shx); + sy = __builtin_fma (e, sy2, sy); fesetenv_register (fe); - return g + sy * d; + return __builtin_fma (sy, d, g); denorm: /* For denormalised numbers, we normalise, calculate the square root, and return an adjusted result. */ Index: glibc-2.21/sysdeps/powerpc/fpu/e_sqrtf.c =================================================================== --- glibc-2.21.orig/sysdeps/powerpc/fpu/e_sqrtf.c +++ glibc-2.21/sysdeps/powerpc/fpu/e_sqrtf.c @@ -87,26 +87,28 @@ __slow_ieee754_sqrtf (float x) /* Here we have three Newton-Raphson iterations each of a division and a square root and the remainder of the argument reduction, all interleaved. */ - sd = -(sg * sg - sx); + sd = -__builtin_fmaf (sg, sg, -sx); fsgi = (xi + 0x40000000) >> 1 & 0x7f800000; sy2 = sy + sy; - sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */ - e = -(sy * sg - almost_half); + sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to + sqrt(sx). */ + e = -__builtin_fmaf (sy, sg, -almost_half); SET_FLOAT_WORD (fsg, fsgi); - sd = -(sg * sg - sx); - sy = sy + e * sy2; + sd = -__builtin_fmaf (sg, sg, -sx); + sy = __builtin_fmaf (e, sy2, sy); if ((xi & 0x7f800000) == 0) goto denorm; shx = sx * fsg; - sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx), - but perhaps rounded incorrectly. */ + sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to + sqrt(sx), but perhaps + rounded incorrectly. */ sy2 = sy + sy; g = sg * fsg; - e = -(sy * sg - almost_half); - d = -(g * sg - shx); - sy = sy + e * sy2; + e = -__builtin_fmaf (sy, sg, -almost_half); + d = -__builtin_fmaf (g, sg, -shx); + sy = __builtin_fmaf (e, sy2, sy); fesetenv_register (fe); - return g + sy * d; + return __builtin_fmaf (sy, d, g); denorm: /* For denormalised numbers, we normalise, calculate the square root, and return an adjusted result. */