extended to perform the benchmarking on the old memchunk code if 'O' is

Fri Dec  2 10:55:07 2005  Tim Janik  <timj@imendio.com>

        * tests/slice-test.c: extended to perform the benchmarking on the old
        memchunk code if 'O' is selected.

        * tests/memchunks.c: new file which contains the old GLib mem chunks
        implementation with prefix old_mem_chunk_.

        * tests/Makefile.am: added memchunks.c
This commit is contained in:
Tim Janik 2005-12-02 09:57:06 +00:00 committed by Tim Janik
parent 8a5fb6c1be
commit 2731276269
3 changed files with 748 additions and 22 deletions

View File

@ -150,6 +150,7 @@ rand_test_LDADD = $(progs_ldadd)
relation_test_LDADD = $(progs_ldadd)
shell_test_LDADD = $(progs_ldadd)
slist_test_LDADD = $(progs_ldadd)
slice_test_SOURCES = slice-test.c memchunks.c
slice_test_LDADD = $(thread_ldadd)
spawn_test_LDADD = $(progs_ldadd)
strfunc_test_LDADD = $(progs_ldadd)

612
tests/memchunks.c Normal file
View File

@ -0,0 +1,612 @@
/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "glib.h"
/* notes on macros:
* if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
*/
#define MEM_PROFILE_TABLE_SIZE 4096
#define MEM_AREA_SIZE 4L
static guint mem_chunk_recursion = 0;
# define MEM_CHUNK_ROUTINE_COUNT() (mem_chunk_recursion)
# define ENTER_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
# define LEAVE_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)
/* --- old memchunk prototypes --- */
void old_mem_chunks_init (void);
GMemChunk* old_mem_chunk_new (const gchar *name,
gint atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
/* --- MemChunks --- */
#ifndef G_ALLOC_AND_FREE
typedef struct _GAllocator GAllocator;
typedef struct _GMemChunk GMemChunk;
#define G_ALLOC_ONLY 1
#define G_ALLOC_AND_FREE 2
#endif
typedef struct _GFreeAtom GFreeAtom;
typedef struct _GMemArea GMemArea;
struct _GFreeAtom
{
GFreeAtom *next;
};
struct _GMemArea
{
GMemArea *next; /* the next mem area */
GMemArea *prev; /* the previous mem area */
gulong index; /* the current index into the "mem" array */
gulong free; /* the number of free bytes in this mem area */
gulong allocated; /* the number of atoms allocated from this area */
gulong mark; /* is this mem area marked for deletion */
gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated
* the actual size of this array is determined by
* the mem chunk "area_size". ANSI says that it
* must be declared to be the maximum size it
* can possibly be (even though the actual size
* may be less).
*/
};
struct _GMemChunk
{
const gchar *name; /* name of this MemChunk...used for debugging output */
gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
gint num_mem_areas; /* the number of memory areas */
gint num_marked_areas; /* the number of areas marked for deletion */
guint atom_size; /* the size of an atom */
gulong area_size; /* the size of a memory area */
GMemArea *mem_area; /* the current memory area */
GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */
GMemArea *free_mem_area; /* the free area...which is about to be destroyed */
GFreeAtom *free_atoms; /* the free atoms list */
GTree *mem_tree; /* tree of mem areas sorted by memory address */
GMemChunk *next; /* pointer to the next chunk */
GMemChunk *prev; /* pointer to the previous chunk */
};
static gulong old_mem_chunk_compute_size (gulong size,
gulong min_size) G_GNUC_CONST;
static gint old_mem_chunk_area_compare (GMemArea *a,
GMemArea *b);
static gint old_mem_chunk_area_search (GMemArea *a,
gchar *addr);
/* here we can't use StaticMutexes, as they depend upon a working
* g_malloc, the same holds true for StaticPrivate
*/
static GMutex *mem_chunks_lock = NULL;
static GMemChunk *mem_chunks = NULL;
void
old_mem_chunks_init (void)
{
mem_chunks_lock = g_mutex_new ();
}
GMemChunk*
old_mem_chunk_new (const gchar *name,
gint atom_size,
gulong area_size,
gint type)
{
GMemChunk *mem_chunk;
gulong rarea_size;
g_return_val_if_fail (atom_size > 0, NULL);
g_return_val_if_fail (area_size >= atom_size, NULL);
ENTER_MEM_CHUNK_ROUTINE ();
area_size = (area_size + atom_size - 1) / atom_size;
area_size *= atom_size;
mem_chunk = g_new (GMemChunk, 1);
mem_chunk->name = name;
mem_chunk->type = type;
mem_chunk->num_mem_areas = 0;
mem_chunk->num_marked_areas = 0;
mem_chunk->mem_area = NULL;
mem_chunk->free_mem_area = NULL;
mem_chunk->free_atoms = NULL;
mem_chunk->mem_tree = NULL;
mem_chunk->mem_areas = NULL;
mem_chunk->atom_size = atom_size;
if (mem_chunk->type == G_ALLOC_AND_FREE)
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
if (mem_chunk->atom_size % G_MEM_ALIGN)
mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
g_mutex_lock (mem_chunks_lock);
mem_chunk->next = mem_chunks;
mem_chunk->prev = NULL;
if (mem_chunks)
mem_chunks->prev = mem_chunk;
mem_chunks = mem_chunk;
g_mutex_unlock (mem_chunks_lock);
LEAVE_MEM_CHUNK_ROUTINE ();
return mem_chunk;
}
void
old_mem_chunk_destroy (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
g_mutex_lock (mem_chunks_lock);
if (mem_chunk->next)
mem_chunk->next->prev = mem_chunk->prev;
if (mem_chunk->prev)
mem_chunk->prev->next = mem_chunk->next;
if (mem_chunk == mem_chunks)
mem_chunks = mem_chunks->next;
g_mutex_unlock (mem_chunks_lock);
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_destroy (mem_chunk->mem_tree);
g_free (mem_chunk);
LEAVE_MEM_CHUNK_ROUTINE ();
}
gpointer
old_mem_chunk_alloc (GMemChunk *mem_chunk)
{
GMemArea *temp_area;
gpointer mem;
ENTER_MEM_CHUNK_ROUTINE ();
g_return_val_if_fail (mem_chunk != NULL, NULL);
while (mem_chunk->free_atoms)
{
/* Get the first piece of memory on the "free_atoms" list.
* We can go ahead and destroy the list node we used to keep
* track of it with and to update the "free_atoms" list to
* point to its next element.
*/
mem = mem_chunk->free_atoms;
mem_chunk->free_atoms = mem_chunk->free_atoms->next;
/* Determine which area this piece of memory is allocated from */
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
/* If the area has been marked, then it is being destroyed.
* (ie marked to be destroyed).
* We check to see if all of the segments on the free list that
* reference this area have been removed. This occurs when
* the ammount of free memory is less than the allocatable size.
* If the chunk should be freed, then we place it in the "free_mem_area".
* This is so we make sure not to free the mem area here and then
* allocate it again a few lines down.
* If we don't allocate a chunk a few lines down then the "free_mem_area"
* will be freed.
* If there is already a "free_mem_area" then we'll just free this mem area.
*/
if (temp_area->mark)
{
/* Update the "free" memory available in that area */
temp_area->free += mem_chunk->atom_size;
if (temp_area->free == mem_chunk->area_size)
{
if (temp_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->free_mem_area)
{
mem_chunk->num_mem_areas -= 1;
if (temp_area->next)
temp_area->next->prev = temp_area->prev;
if (temp_area->prev)
temp_area->prev->next = temp_area->next;
if (temp_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, temp_area);
g_free (temp_area);
}
else
mem_chunk->free_mem_area = temp_area;
mem_chunk->num_marked_areas -= 1;
}
}
else
{
/* Update the number of allocated atoms count.
*/
temp_area->allocated += 1;
/* The area wasn't marked...return the memory
*/
goto outa_here;
}
}
/* If there isn't a current mem area or the current mem area is out of space
* then allocate a new mem area. We'll first check and see if we can use
* the "free_mem_area". Otherwise we'll just malloc the mem area.
*/
if ((!mem_chunk->mem_area) ||
((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
{
if (mem_chunk->free_mem_area)
{
mem_chunk->mem_area = mem_chunk->free_mem_area;
mem_chunk->free_mem_area = NULL;
}
else
{
#ifdef ENABLE_GC_FRIENDLY
mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#else /* !ENABLE_GC_FRIENDLY */
mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#endif /* ENABLE_GC_FRIENDLY */
mem_chunk->num_mem_areas += 1;
mem_chunk->mem_area->next = mem_chunk->mem_areas;
mem_chunk->mem_area->prev = NULL;
if (mem_chunk->mem_areas)
mem_chunk->mem_areas->prev = mem_chunk->mem_area;
mem_chunk->mem_areas = mem_chunk->mem_area;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
}
mem_chunk->mem_area->index = 0;
mem_chunk->mem_area->free = mem_chunk->area_size;
mem_chunk->mem_area->allocated = 0;
mem_chunk->mem_area->mark = 0;
}
/* Get the memory and modify the state variables appropriately.
*/
mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
mem_chunk->mem_area->index += mem_chunk->atom_size;
mem_chunk->mem_area->free -= mem_chunk->atom_size;
mem_chunk->mem_area->allocated += 1;
outa_here:
LEAVE_MEM_CHUNK_ROUTINE ();
return mem;
}
gpointer
old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
gpointer mem;
mem = old_mem_chunk_alloc (mem_chunk);
if (mem)
{
memset (mem, 0, mem_chunk->atom_size);
}
return mem;
}
void
old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem)
{
GMemArea *temp_area;
GFreeAtom *free_atom;
g_return_if_fail (mem_chunk != NULL);
g_return_if_fail (mem != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
#ifdef ENABLE_GC_FRIENDLY
memset (mem, 0, mem_chunk->atom_size);
#endif /* ENABLE_GC_FRIENDLY */
/* Don't do anything if this is an ALLOC_ONLY chunk
*/
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
/* Place the memory on the "free_atoms" list
*/
free_atom = (GFreeAtom*) mem;
free_atom->next = mem_chunk->free_atoms;
mem_chunk->free_atoms = free_atom;
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
temp_area->allocated -= 1;
if (temp_area->allocated == 0)
{
temp_area->mark = 1;
mem_chunk->num_marked_areas += 1;
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
/* This doesn't free the free_area if there is one */
void
old_mem_chunk_clean (GMemChunk *mem_chunk)
{
GMemArea *mem_area;
GFreeAtom *prev_free_atom;
GFreeAtom *temp_free_atom;
gpointer mem;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
prev_free_atom = NULL;
temp_free_atom = mem_chunk->free_atoms;
while (temp_free_atom)
{
mem = (gpointer) temp_free_atom;
mem_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
/* If this mem area is marked for destruction then delete the
* area and list node and decrement the free mem.
*/
if (mem_area->mark)
{
if (prev_free_atom)
prev_free_atom->next = temp_free_atom->next;
else
mem_chunk->free_atoms = temp_free_atom->next;
temp_free_atom = temp_free_atom->next;
mem_area->free += mem_chunk->atom_size;
if (mem_area->free == mem_chunk->area_size)
{
mem_chunk->num_mem_areas -= 1;
mem_chunk->num_marked_areas -= 1;
if (mem_area->next)
mem_area->next->prev = mem_area->prev;
if (mem_area->prev)
mem_area->prev->next = mem_area->next;
if (mem_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, mem_area);
g_free (mem_area);
}
}
else
{
prev_free_atom = temp_free_atom;
temp_free_atom = temp_free_atom->next;
}
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
old_mem_chunk_reset (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
mem_chunk->num_mem_areas = 0;
mem_chunk->mem_areas = NULL;
mem_chunk->mem_area = NULL;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
mem_chunk->free_atoms = NULL;
if (mem_chunk->mem_tree)
{
g_tree_destroy (mem_chunk->mem_tree);
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
old_mem_chunk_print (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
gulong mem;
g_return_if_fail (mem_chunk != NULL);
mem_areas = mem_chunk->mem_areas;
mem = 0;
while (mem_areas)
{
mem += mem_chunk->area_size - mem_areas->free;
mem_areas = mem_areas->next;
}
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
"%s: %ld bytes using %d mem areas",
mem_chunk->name, mem, mem_chunk->num_mem_areas);
}
void
old_mem_chunk_info (void)
{
GMemChunk *mem_chunk;
gint count;
count = 0;
g_mutex_lock (mem_chunks_lock);
mem_chunk = mem_chunks;
while (mem_chunk)
{
count += 1;
mem_chunk = mem_chunk->next;
}
g_mutex_unlock (mem_chunks_lock);
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
g_mutex_lock (mem_chunks_lock);
mem_chunk = mem_chunks;
g_mutex_unlock (mem_chunks_lock);
while (mem_chunk)
{
old_mem_chunk_print ((GMemChunk*) mem_chunk);
mem_chunk = mem_chunk->next;
}
}
static gulong
old_mem_chunk_compute_size (gulong size,
gulong min_size)
{
gulong power_of_2;
gulong lower, upper;
power_of_2 = 16;
while (power_of_2 < size)
power_of_2 <<= 1;
lower = power_of_2 >> 1;
upper = power_of_2;
if (size - lower < upper - size && lower >= min_size)
return lower;
else
return upper;
}
static gint
old_mem_chunk_area_compare (GMemArea *a,
GMemArea *b)
{
if (a->mem > b->mem)
return 1;
else if (a->mem < b->mem)
return -1;
return 0;
}
static gint
old_mem_chunk_area_search (GMemArea *a,
gchar *addr)
{
if (a->mem <= addr)
{
if (addr < &a->mem[a->index])
return 0;
return 1;
}
return -1;
}

View File

@ -23,7 +23,109 @@
#include <sys/time.h> // gettimeofday
#define quick_rand32() (rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static guint prime_size = 1021; // 769; // 509
static guint prime_size = 1021; // 769; // 509
static gboolean clean_memchunks = FALSE;
static guint number_of_blocks = 10000; /* total number of blocks allocated */
static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
/* --- old memchunk prototypes (memchunks.c) --- */
void old_mem_chunks_init (void);
GMemChunk* old_mem_chunk_new (const gchar *name,
gint atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline gpointer
memchunk_alloc (GMemChunk **memchunkp,
guint size)
{
size = MAX (size, 1);
if (G_UNLIKELY (!*memchunkp))
*memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE);
return old_mem_chunk_alloc (*memchunkp);
}
static inline void
memchunk_free (GMemChunk *memchunk,
gpointer chunk)
{
old_mem_chunk_free (memchunk, chunk);
if (clean_memchunks)
old_mem_chunk_clean (memchunk);
}
static gpointer
test_memchunk_thread (gpointer data)
{
guint32 rand_accu = 2147483563;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
struct timeval rand_tv;
gettimeofday (&rand_tv, NULL);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
/* prepare for memchunk creation */
GMemChunk **memchunks = g_alloca (sizeof (memchunks[0]) * prime_size);
memset (memchunks, 0, sizeof (memchunks[0]) * prime_size);
guint i, j;
guint8 **ps = g_new (guint8*, number_of_blocks);
guint *ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
memchunk_free (memchunks[ss[i]], ps[i]);
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
memchunk_free (memchunks[ss[i]], ps[i]);
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = memchunk_alloc (&memchunks[sz], sz);
for (j = 0; j < k; j++)
memchunk_free (memchunks[sz], ps[j]);
}
/* cleanout memchunks */
for (i = 0; i < prime_size; i++)
if (memchunks[i])
old_mem_chunk_destroy (memchunks[i]);
return NULL;
}
static gpointer
test_sliced_mem_thread (gpointer data)
@ -39,36 +141,35 @@ test_sliced_mem_thread (gpointer data)
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
guint i, m = 10000; /* number of blocks */
guint j, n = 10000; /* number of alloc+free repetitions */
guint8 **ps = g_new (guint8*, m);
guint *ss = g_new (guint, m);
/* create m random sizes */
for (i = 0; i < m; i++)
guint i, j;
guint8 **ps = g_new (guint8*, number_of_blocks);
guint *ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate m blocks */
for (i = 0; i < m; i++)
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = g_slice_alloc (ss[i]);
for (j = 0; j < n; j++)
for (j = 0; j < number_of_repetitions; j++)
{
/* free m/2 blocks */
for (i = 0; i < m; i += 2)
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
g_slice_free1 (ss[i], ps[i]);
/* allocate m/2 blocks with new sizes */
for (i = 0; i < m; i += 2)
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = g_slice_alloc (ss[i]);
}
}
/* free m blocks */
for (i = 0; i < m; i++)
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
g_slice_free1 (ss[i], ps[i]);
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < n; i++)
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = m / 100;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = g_slice_alloc (sz);
for (j = 0; j < k; j++)
@ -81,7 +182,7 @@ test_sliced_mem_thread (gpointer data)
static void
usage (void)
{
g_print ("Usage: gslicedmemory [n_threads] [G|S|M][f][c] [maxblocksize] [seed]\n");
g_print ("Usage: gslicedmemory [n_threads] [G|S|M|O][f][c] [maxblocksize] [seed]\n");
}
int
@ -89,7 +190,7 @@ main (int argc,
char *argv[])
{
guint seed32, *seedp = NULL;
gboolean ccounters = FALSE;
gboolean ccounters = FALSE, use_memchunks = FALSE;
guint n_threads = 1;
const gchar *mode = "slab allocator + magazine cache", *emode = " ";
if (argc > 1)
@ -114,8 +215,13 @@ main (int argc,
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE);
mode = "system malloc";
break;
case 'O': /* old memchunks */
use_memchunks = TRUE;
mode = "old memchunks";
break;
case 'f': /* eager freeing */
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_FREE, TRUE);
clean_memchunks = TRUE;
emode = " with eager freeing";
break;
case 'c': /* print contention counters */
@ -146,8 +252,15 @@ main (int argc,
GThread *threads[n_threads];
guint i;
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL);
if (!use_memchunks)
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL);
else
{
old_mem_chunks_init();
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create_full (test_memchunk_thread, seedp, 0, TRUE, FALSE, 0, NULL);
}
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);