tests: Drop unnecessary GSlice tests

Now that the implementation of GSlice has been dropped, these tests for
the internals of the implementation are unnecessary.

We can keep `glib/tests/slice.c` as it tests the API rather than the
implementation.

Signed-off-by: Philip Withnall <pwithnall@endlessos.org>

Helps: #1079
This commit is contained in:
Philip Withnall 2023-01-25 13:26:40 +00:00
parent 7e4b8dfb82
commit 41416c9fe6
10 changed files with 0 additions and 1844 deletions

View File

@ -1,603 +0,0 @@
/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "glib.h"
/* notes on macros:
* if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
*/
#define MEM_PROFILE_TABLE_SIZE 4096
#define MEM_AREA_SIZE 4L
static guint mem_chunk_recursion = 0;
# define MEM_CHUNK_ROUTINE_COUNT() (mem_chunk_recursion)
# define ENTER_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
# define LEAVE_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)
/* --- old memchunk prototypes --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
/* --- MemChunks --- */
#ifndef G_ALLOC_AND_FREE
typedef struct _GAllocator GAllocator;
typedef struct _GMemChunk GMemChunk;
#define G_ALLOC_ONLY 1
#define G_ALLOC_AND_FREE 2
#endif
typedef struct _GFreeAtom GFreeAtom;
typedef struct _GMemArea GMemArea;
struct _GFreeAtom
{
GFreeAtom *next;
};
struct _GMemArea
{
GMemArea *next; /* the next mem area */
GMemArea *prev; /* the previous mem area */
gulong index; /* the current index into the "mem" array */
gulong free; /* the number of free bytes in this mem area */
gulong allocated; /* the number of atoms allocated from this area */
gulong mark; /* is this mem area marked for deletion */
gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated
* the actual size of this array is determined by
* the mem chunk "area_size". ANSI says that it
* must be declared to be the maximum size it
* can possibly be (even though the actual size
* may be less).
*/
};
struct _GMemChunk
{
const gchar *name; /* name of this MemChunk...used for debugging output */
gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
gint num_mem_areas; /* the number of memory areas */
gint num_marked_areas; /* the number of areas marked for deletion */
guint atom_size; /* the size of an atom */
gulong area_size; /* the size of a memory area */
GMemArea *mem_area; /* the current memory area */
GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */
GMemArea *free_mem_area; /* the free area...which is about to be destroyed */
GFreeAtom *free_atoms; /* the free atoms list */
GTree *mem_tree; /* tree of mem areas sorted by memory address */
GMemChunk *next; /* pointer to the next chunk */
GMemChunk *prev; /* pointer to the previous chunk */
};
static gulong old_mem_chunk_compute_size (gulong size,
gulong min_size) G_GNUC_CONST;
static gint old_mem_chunk_area_compare (GMemArea *a,
GMemArea *b);
static gint old_mem_chunk_area_search (GMemArea *a,
gchar *addr);
/* here we can't use StaticMutexes, as they depend upon a working
* g_malloc, the same holds true for StaticPrivate
*/
static GMutex mem_chunks_lock;
static GMemChunk *mem_chunks = NULL;
GMemChunk*
old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type)
{
GMemChunk *mem_chunk;
gulong rarea_size;
g_return_val_if_fail (atom_size > 0, NULL);
g_return_val_if_fail (area_size >= atom_size, NULL);
ENTER_MEM_CHUNK_ROUTINE ();
area_size = (area_size + atom_size - 1) / atom_size;
area_size *= atom_size;
mem_chunk = g_new (GMemChunk, 1);
mem_chunk->name = name;
mem_chunk->type = type;
mem_chunk->num_mem_areas = 0;
mem_chunk->num_marked_areas = 0;
mem_chunk->mem_area = NULL;
mem_chunk->free_mem_area = NULL;
mem_chunk->free_atoms = NULL;
mem_chunk->mem_tree = NULL;
mem_chunk->mem_areas = NULL;
mem_chunk->atom_size = atom_size;
if (mem_chunk->type == G_ALLOC_AND_FREE)
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
if (mem_chunk->atom_size % G_MEM_ALIGN)
mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
g_mutex_lock (&mem_chunks_lock);
mem_chunk->next = mem_chunks;
mem_chunk->prev = NULL;
if (mem_chunks)
mem_chunks->prev = mem_chunk;
mem_chunks = mem_chunk;
g_mutex_unlock (&mem_chunks_lock);
LEAVE_MEM_CHUNK_ROUTINE ();
return mem_chunk;
}
void
old_mem_chunk_destroy (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
g_mutex_lock (&mem_chunks_lock);
if (mem_chunk->next)
mem_chunk->next->prev = mem_chunk->prev;
if (mem_chunk->prev)
mem_chunk->prev->next = mem_chunk->next;
if (mem_chunk == mem_chunks)
mem_chunks = mem_chunks->next;
g_mutex_unlock (&mem_chunks_lock);
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_destroy (mem_chunk->mem_tree);
g_free (mem_chunk);
LEAVE_MEM_CHUNK_ROUTINE ();
}
gpointer
old_mem_chunk_alloc (GMemChunk *mem_chunk)
{
GMemArea *temp_area;
gpointer mem;
ENTER_MEM_CHUNK_ROUTINE ();
g_return_val_if_fail (mem_chunk != NULL, NULL);
while (mem_chunk->free_atoms)
{
/* Get the first piece of memory on the "free_atoms" list.
* We can go ahead and destroy the list node we used to keep
* track of it with and to update the "free_atoms" list to
* point to its next element.
*/
mem = mem_chunk->free_atoms;
mem_chunk->free_atoms = mem_chunk->free_atoms->next;
/* Determine which area this piece of memory is allocated from */
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
/* If the area has been marked, then it is being destroyed.
* (ie marked to be destroyed).
* We check to see if all of the segments on the free list that
* reference this area have been removed. This occurs when
* the amount of free memory is less than the allocatable size.
* If the chunk should be freed, then we place it in the "free_mem_area".
* This is so we make sure not to free the mem area here and then
* allocate it again a few lines down.
* If we don't allocate a chunk a few lines down then the "free_mem_area"
* will be freed.
* If there is already a "free_mem_area" then we'll just free this mem area.
*/
if (temp_area->mark)
{
/* Update the "free" memory available in that area */
temp_area->free += mem_chunk->atom_size;
if (temp_area->free == mem_chunk->area_size)
{
if (temp_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->free_mem_area)
{
mem_chunk->num_mem_areas -= 1;
if (temp_area->next)
temp_area->next->prev = temp_area->prev;
if (temp_area->prev)
temp_area->prev->next = temp_area->next;
if (temp_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, temp_area);
g_free (temp_area);
}
else
mem_chunk->free_mem_area = temp_area;
mem_chunk->num_marked_areas -= 1;
}
}
else
{
/* Update the number of allocated atoms count.
*/
temp_area->allocated += 1;
/* The area wasn't marked...return the memory
*/
goto outa_here;
}
}
/* If there isn't a current mem area or the current mem area is out of space
* then allocate a new mem area. We'll first check and see if we can use
* the "free_mem_area". Otherwise we'll just malloc the mem area.
*/
if ((!mem_chunk->mem_area) ||
((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
{
if (mem_chunk->free_mem_area)
{
mem_chunk->mem_area = mem_chunk->free_mem_area;
mem_chunk->free_mem_area = NULL;
}
else
{
#ifdef ENABLE_GC_FRIENDLY
mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#else /* !ENABLE_GC_FRIENDLY */
mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#endif /* ENABLE_GC_FRIENDLY */
mem_chunk->num_mem_areas += 1;
mem_chunk->mem_area->next = mem_chunk->mem_areas;
mem_chunk->mem_area->prev = NULL;
if (mem_chunk->mem_areas)
mem_chunk->mem_areas->prev = mem_chunk->mem_area;
mem_chunk->mem_areas = mem_chunk->mem_area;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
}
mem_chunk->mem_area->index = 0;
mem_chunk->mem_area->free = mem_chunk->area_size;
mem_chunk->mem_area->allocated = 0;
mem_chunk->mem_area->mark = 0;
}
/* Get the memory and modify the state variables appropriately.
*/
mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
mem_chunk->mem_area->index += mem_chunk->atom_size;
mem_chunk->mem_area->free -= mem_chunk->atom_size;
mem_chunk->mem_area->allocated += 1;
outa_here:
LEAVE_MEM_CHUNK_ROUTINE ();
return mem;
}
gpointer
old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
gpointer mem;
mem = old_mem_chunk_alloc (mem_chunk);
if (mem)
{
memset (mem, 0, mem_chunk->atom_size);
}
return mem;
}
void
old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem)
{
GMemArea *temp_area;
GFreeAtom *free_atom;
g_return_if_fail (mem_chunk != NULL);
g_return_if_fail (mem != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
#ifdef ENABLE_GC_FRIENDLY
memset (mem, 0, mem_chunk->atom_size);
#endif /* ENABLE_GC_FRIENDLY */
/* Don't do anything if this is an ALLOC_ONLY chunk
*/
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
/* Place the memory on the "free_atoms" list
*/
free_atom = (GFreeAtom*) mem;
free_atom->next = mem_chunk->free_atoms;
mem_chunk->free_atoms = free_atom;
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
temp_area->allocated -= 1;
if (temp_area->allocated == 0)
{
temp_area->mark = 1;
mem_chunk->num_marked_areas += 1;
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
/* This doesn't free the free_area if there is one */
void
old_mem_chunk_clean (GMemChunk *mem_chunk)
{
GMemArea *mem_area;
GFreeAtom *prev_free_atom;
GFreeAtom *temp_free_atom;
gpointer mem;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
prev_free_atom = NULL;
temp_free_atom = mem_chunk->free_atoms;
while (temp_free_atom)
{
mem = (gpointer) temp_free_atom;
mem_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) old_mem_chunk_area_search,
mem);
/* If this mem area is marked for destruction then delete the
* area and list node and decrement the free mem.
*/
if (mem_area->mark)
{
if (prev_free_atom)
prev_free_atom->next = temp_free_atom->next;
else
mem_chunk->free_atoms = temp_free_atom->next;
temp_free_atom = temp_free_atom->next;
mem_area->free += mem_chunk->atom_size;
if (mem_area->free == mem_chunk->area_size)
{
mem_chunk->num_mem_areas -= 1;
mem_chunk->num_marked_areas -= 1;
if (mem_area->next)
mem_area->next->prev = mem_area->prev;
if (mem_area->prev)
mem_area->prev->next = mem_area->next;
if (mem_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, mem_area);
g_free (mem_area);
}
}
else
{
prev_free_atom = temp_free_atom;
temp_free_atom = temp_free_atom->next;
}
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
old_mem_chunk_reset (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
mem_chunk->num_mem_areas = 0;
mem_chunk->mem_areas = NULL;
mem_chunk->mem_area = NULL;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
mem_chunk->free_atoms = NULL;
if (mem_chunk->mem_tree)
{
g_tree_destroy (mem_chunk->mem_tree);
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
old_mem_chunk_print (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
gulong mem;
g_return_if_fail (mem_chunk != NULL);
mem_areas = mem_chunk->mem_areas;
mem = 0;
while (mem_areas)
{
mem += mem_chunk->area_size - mem_areas->free;
mem_areas = mem_areas->next;
}
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
"%s: %ld bytes using %d mem areas",
mem_chunk->name, mem, mem_chunk->num_mem_areas);
}
void
old_mem_chunk_info (void)
{
GMemChunk *mem_chunk;
gint count;
count = 0;
g_mutex_lock (&mem_chunks_lock);
mem_chunk = mem_chunks;
while (mem_chunk)
{
count += 1;
mem_chunk = mem_chunk->next;
}
g_mutex_unlock (&mem_chunks_lock);
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
g_mutex_lock (&mem_chunks_lock);
mem_chunk = mem_chunks;
g_mutex_unlock (&mem_chunks_lock);
while (mem_chunk)
{
old_mem_chunk_print ((GMemChunk*) mem_chunk);
mem_chunk = mem_chunk->next;
}
}
static gulong
old_mem_chunk_compute_size (gulong size,
gulong min_size)
{
gulong power_of_2;
gulong lower, upper;
power_of_2 = 16;
while (power_of_2 < size)
power_of_2 <<= 1;
lower = power_of_2 >> 1;
upper = power_of_2;
if (size - lower < upper - size && lower >= min_size)
return lower;
else
return upper;
}
static gint
old_mem_chunk_area_compare (GMemArea *a,
GMemArea *b)
{
if (a->mem > b->mem)
return 1;
else if (a->mem < b->mem)
return -1;
return 0;
}
static gint
old_mem_chunk_area_search (GMemArea *a,
gchar *addr)
{
if (a->mem <= addr)
{
if (addr < &a->mem[a->index])
return 0;
return 1;
}
return -1;
}

View File

@ -103,16 +103,6 @@ glib_tests = {
},
'shell' : {},
'slice' : {},
'slice-color' : {},
'slice-concurrent' : {},
'slice-known-pages' : {'suite' : ['no-valgrind']},
'slice-glib' : {},
'slice-slab' : {},
'slice-malloc' : {},
'slice-memchunk' : {
'source' : ['slice-memchunk.c', 'memchunks.c'],
},
'slice-eager-freeing' : {},
'slist' : {},
'sort' : {},
'spawn-multithreaded' : {

View File

@ -1,135 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <glib.h>
#define ALIGN(size, base) \
((base) * (gsize) (((size) + (base) - 1) / (base)))
static void
fill_memory (guint **mem,
guint n,
guint val)
{
guint j;
for (j = 0; j < n; j++)
mem[j][0] = val;
}
static guint64
access_memory3 (guint **mema,
guint **memb,
guint **memd,
guint n,
guint64 repeats)
{
guint64 accu = 0, i, j;
for (i = 0; i < repeats; i++)
{
for (j = 1; j < n; j += 2)
memd[j][0] = mema[j][0] + memb[j][0];
}
for (i = 0; i < repeats; i++)
for (j = 0; j < n; j++)
accu += memd[j][0];
return accu;
}
static void
touch_mem (guint64 block_size,
guint64 n_blocks,
guint64 repeats)
{
GTimer *timer;
guint **mema, **memb, **memc;
guint64 j, accu, n = n_blocks;
mema = g_new (guint*, n);
for (j = 0; j < n; j++)
mema[j] = g_slice_alloc (block_size);
memb = g_new (guint*, n);
for (j = 0; j < n; j++)
memb[j] = g_slice_alloc (block_size);
memc = g_new (guint*, n);
for (j = 0; j < n; j++)
memc[j] = g_slice_alloc (block_size);
timer = g_timer_new();
fill_memory (mema, n, 2);
fill_memory (memb, n, 3);
fill_memory (memc, n, 4);
access_memory3 (mema, memb, memc, n, 3);
g_timer_start (timer);
accu = access_memory3 (mema, memb, memc, n, repeats);
g_timer_stop (timer);
g_test_message ("Access-time = %fs", g_timer_elapsed (timer, NULL));
g_assert_cmpuint (accu / repeats, ==, (2 + 3) * n / 2 + 4 * n / 2);
for (j = 0; j < n; j++)
{
g_slice_free1 (block_size, mema[j]);
g_slice_free1 (block_size, memb[j]);
g_slice_free1 (block_size, memc[j]);
}
g_timer_destroy (timer);
g_free (mema);
g_free (memb);
g_free (memc);
}
static void
test_slice_colors (void)
{
guint64 block_size = 512;
guint64 area_size = 1024 * 1024;
guint64 n_blocks, repeats = 1000000;
/* figure number of blocks from block and area size.
* divide area by 3 because touch_mem() allocates 3 areas */
n_blocks = area_size / 3 / ALIGN (block_size, sizeof (gsize) * 2);
g_test_message ("Allocate and touch %" G_GUINT64_FORMAT
" blocks of %" G_GUINT64_FORMAT " bytes"
" (= %" G_GUINT64_FORMAT " bytes) %" G_GUINT64_FORMAT
" times with color increment",
n_blocks, block_size, n_blocks * block_size, repeats);
touch_mem (block_size, n_blocks, repeats);
}
int
main (int argc, char **argv)
{
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/colors", test_slice_colors);
return g_test_run ();
}

View File

@ -1,135 +0,0 @@
/* test for gslice cross thread allocation/free
* Copyright (C) 2006 Stefan Westerfeld
* Copyright (C) 2007 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <glib.h>
#include <stdlib.h>
#define N_THREADS 8
#define N_ALLOCS 50000
#define MAX_BLOCK_SIZE 64
struct ThreadData
{
int thread_id;
GThread* gthread;
GMutex to_free_mutex;
void* to_free [N_THREADS * N_ALLOCS];
int bytes_to_free [N_THREADS * N_ALLOCS];
int n_to_free;
int n_freed;
} tdata[N_THREADS];
static void *
thread_func (void *arg)
{
int i;
struct ThreadData *td = arg;
GRand *thread_rand = g_rand_new ();
for (i = 0; i < N_ALLOCS; i++)
{
int bytes, f, t;
char *mem;
if (g_rand_int_range (thread_rand, 0, N_ALLOCS / 20) == 0)
g_test_message ("%c", 'a' - 1 + td->thread_id);
/* allocate block of random size and randomly fill */
bytes = g_rand_int_range (thread_rand, 0, MAX_BLOCK_SIZE) + 1;
mem = g_slice_alloc (bytes);
for (f = 0; f < bytes; f++)
mem[f] = (char) g_rand_int (thread_rand);
/* associate block with random thread */
t = g_rand_int_range (thread_rand, 0, N_THREADS);
g_mutex_lock (&tdata[t].to_free_mutex);
tdata[t].to_free[tdata[t].n_to_free] = mem;
tdata[t].bytes_to_free[tdata[t].n_to_free] = bytes;
tdata[t].n_to_free++;
g_mutex_unlock (&tdata[t].to_free_mutex);
/* shuffle thread execution order every once in a while */
if (g_rand_int_range (thread_rand, 0, 97) == 0)
{
if (g_rand_boolean (thread_rand))
g_thread_yield(); /* concurrent shuffling for single core */
else
g_usleep (1000); /* concurrent shuffling for multi core */
}
/* free a block associated with this thread */
g_mutex_lock (&td->to_free_mutex);
if (td->n_to_free > 0)
{
td->n_to_free--;
g_slice_free1 (td->bytes_to_free[td->n_to_free],
td->to_free[td->n_to_free]);
td->n_freed++;
}
g_mutex_unlock (&td->to_free_mutex);
}
g_rand_free (thread_rand);
return NULL;
}
static void
test_concurrent_slice (void)
{
int t;
for (t = 0; t < N_THREADS; t++)
{
tdata[t].thread_id = t + 1;
tdata[t].n_to_free = 0;
tdata[t].n_freed = 0;
}
for (t = 0; t < N_THREADS; t++)
{
tdata[t].gthread = g_thread_new (NULL, thread_func, &tdata[t]);
g_assert_nonnull (tdata[t].gthread);
}
for (t = 0; t < N_THREADS; t++)
{
g_thread_join (tdata[t].gthread);
}
for (t = 0; t < N_THREADS; t++)
{
g_test_message ("Thread %d: %d blocks freed, %d blocks not freed",
tdata[t].thread_id, tdata[t].n_freed, tdata[t].n_to_free);
}
}
int
main (int argc, char **argv)
{
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/concurrent", test_concurrent_slice);
return g_test_run ();
}

View File

@ -1,158 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* We are testing some deprecated APIs here */
#ifndef GLIB_DISABLE_DEPRECATION_WARNINGS
#define GLIB_DISABLE_DEPRECATION_WARNINGS
#endif
#include <glib.h>
#define quick_rand32() \
(rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static guint prime_size = 1021; /* 769; 509 */
static gboolean clean_memchunks = FALSE;
static guint number_of_blocks = 10000; /* total number of blocks allocated */
static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
static gboolean want_corruption = FALSE;
/* --- old memchunk prototypes (memchunks.c) --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline int
corruption (void)
{
if (G_UNLIKELY (want_corruption))
{
/* corruption per call likelyness is about 1:4000000 */
guint32 r = g_random_int() % 8000009;
return r == 277 ? +1 : r == 281 ? -1 : 0;
}
return 0;
}
static gpointer
test_sliced_mem_thread (gpointer data)
{
guint32 rand_accu = 2147483563;
guint i, j;
guint8 **ps;
guint *ss;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
GTimeVal rand_tv;
g_get_current_time (&rand_tv);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
ps = g_new (guint8*, number_of_blocks);
ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = g_slice_alloc (ss[i] + corruption());
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = g_slice_alloc (ss[i] + corruption());
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = g_slice_alloc (sz + corruption());
for (j = 0; j < k; j++)
g_slice_free1 (sz + corruption(), ps[j] + corruption());
}
g_free (ps);
g_free (ss);
return NULL;
}
static void
test_slice_eager_freeing (void)
{
GThread **threads;
guint i, n_threads = 1;
clean_memchunks = TRUE;
g_test_message ("Starting %d threads allocating random blocks <= %u bytes",
n_threads, prime_size);
threads = g_alloca (sizeof(GThread*) * n_threads);
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create (test_sliced_mem_thread, NULL, TRUE, NULL);
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);
clean_memchunks = FALSE;
}
int
main (int argc,
char *argv[])
{
g_slice_set_config (G_SLICE_CONFIG_WORKING_SET_MSECS, 0);
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/eager-freeing", test_slice_eager_freeing);
return g_test_run ();
}

View File

@ -1,154 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* We are testing some deprecated APIs here */
#ifndef GLIB_DISABLE_DEPRECATION_WARNINGS
#define GLIB_DISABLE_DEPRECATION_WARNINGS
#endif
#include <glib.h>
#define quick_rand32() \
(rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static guint prime_size = 1021; /* 769; 509 */
static guint number_of_blocks = 10000; /* total number of blocks allocated */
static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
static gboolean want_corruption = FALSE;
/* --- old memchunk prototypes (memchunks.c) --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline int
corruption (void)
{
if (G_UNLIKELY (want_corruption))
{
/* corruption per call likelyness is about 1:4000000 */
guint32 r = g_random_int() % 8000009;
return r == 277 ? +1 : r == 281 ? -1 : 0;
}
return 0;
}
static gpointer
test_sliced_mem_thread (gpointer data)
{
guint32 rand_accu = 2147483563;
guint i, j;
guint8 **ps;
guint *ss;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
GTimeVal rand_tv;
g_get_current_time (&rand_tv);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
ps = g_new (guint8*, number_of_blocks);
ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = g_slice_alloc (ss[i] + corruption());
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = g_slice_alloc (ss[i] + corruption());
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = g_slice_alloc (sz + corruption());
for (j = 0; j < k; j++)
g_slice_free1 (sz + corruption(), ps[j] + corruption());
}
g_free (ps);
g_free (ss);
return NULL;
}
static void
test_slice_glib (void)
{
GThread **threads;
guint i, n_threads = 1;
g_test_message ("Starting %d threads allocating random blocks <= %u bytes",
n_threads, prime_size);
threads = g_alloca (sizeof(GThread*) * n_threads);
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create (test_sliced_mem_thread, NULL, TRUE, NULL);
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);
}
int
main (int argc,
char *argv[])
{
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE);
g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, FALSE);
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/glib", test_slice_glib);
return g_test_run ();
}

View File

@ -1,175 +0,0 @@
/* slice-known-pages.c - test GSlice across known pages
* Copyright (C) 2007 Tim Janik
*
* SPDX-License-Identifier: LicenseRef-old-glib-tests
*
* This work is provided "as is"; redistribution and modification
* in whole or in part, in any medium, physical or electronic is
* permitted without restriction.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* In no event shall the authors or contributors be liable for any
* direct, indirect, incidental, special, exemplary, or consequential
* damages (including, but not limited to, procurement of substitute
* goods or services; loss of use, data, or profits; or business
* interruption) however caused and on any theory of liability, whether
* in contract, strict liability, or tort (including negligence or
* otherwise) arising in any way out of the use of this software, even
* if advised of the possibility of such damage.
*/
#include <glib.h>
#define N_PAGES (101) /* number of pages to sample */
#define SAMPLE_SIZE (7)
#define PAGE_SIZE (128) /* must be <= minimum GSlice alignment block */
#define MAGAZINE_PROBES \
{ \
97, 265, 347 \
} /* block sizes hopefully unused */
#define MAX_PROBE_TRIALS (1031) /* must be >= maximum magazine size */
#define ALIGN(size, base) \
((base) * (gsize) (((size) + (base) - 1) / (base)))
static struct {
void *page;
void *sample;
} pages[N_PAGES] = { { NULL, NULL }, };
static const guint magazine_probes[] = MAGAZINE_PROBES;
#define N_MAGAZINE_PROBES G_N_ELEMENTS (magazine_probes)
static void
release_trash_list (GSList **trash_list,
gsize block_size)
{
while (*trash_list)
{
g_slice_free1 (block_size, (*trash_list)->data);
*trash_list = g_slist_delete_link (*trash_list, *trash_list);
}
}
static GSList *free_list = NULL;
static gboolean
allocate_from_known_page (void)
{
guint i, j, n_trials = N_PAGES * PAGE_SIZE / SAMPLE_SIZE; /* upper bound */
for (i = 0; i < n_trials; i++)
{
void *b = g_slice_alloc (SAMPLE_SIZE);
void *p = (void*) (PAGE_SIZE * ((gsize) b / PAGE_SIZE));
free_list = g_slist_prepend (free_list, b);
/* find page */
for (j = 0; j < N_PAGES; j++)
if (pages[j].page == p)
return TRUE;
}
return FALSE;
}
static void
test_slice_known_pages (void)
{
gsize j, n_pages = 0;
void *mps[N_MAGAZINE_PROBES];
/* probe some magazine sizes */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
mps[j] = g_slice_alloc (magazine_probes[j]);
/* mps[*] now contains pointers to allocated slices */
/* allocate blocks from N_PAGES different pages */
while (n_pages < N_PAGES)
{
void *b = g_slice_alloc (SAMPLE_SIZE);
void *p = (void*) (PAGE_SIZE * ((gsize) b / PAGE_SIZE));
for (j = 0; j < N_PAGES; j++)
if (pages[j].page == p)
break;
if (j < N_PAGES) /* known page */
free_list = g_slist_prepend (free_list, b);
else /* new page */
{
j = n_pages++;
pages[j].page = p;
pages[j].sample = b;
}
}
/* release intermediate allocations */
release_trash_list (&free_list, SAMPLE_SIZE);
/* ensure that we can allocate from known pages */
g_assert_true (allocate_from_known_page());
/* release intermediate allocations */
release_trash_list (&free_list, SAMPLE_SIZE);
/* release magazine probes to be retained */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
g_slice_free1 (magazine_probes[j], mps[j]);
/* mps[*] now contains pointers to released slices */
/* ensure probes were retained */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
{
GSList *trash = NULL;
guint k;
for (k = 0; k < MAX_PROBE_TRIALS; k++)
{
void *mem = g_slice_alloc (magazine_probes[j]);
if (mem == mps[j])
break; /* reallocated previously freed slice */
trash = g_slist_prepend (trash, mem);
}
release_trash_list (&trash, magazine_probes[j]);
g_assert_cmpint (k, <, MAX_PROBE_TRIALS); /* failed to reallocate slice */
}
/* mps[*] now contains pointers to reallocated slices */
/* release magazine probes to be retained across known pages */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
g_slice_free1 (magazine_probes[j], mps[j]);
/* mps[*] now contains pointers to released slices */
/* ensure probes were retained */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
{
GSList *trash = NULL;
guint k;
for (k = 0; k < MAX_PROBE_TRIALS; k++)
{
void *mem = g_slice_alloc (magazine_probes[j]);
if (mem == mps[j])
break; /* reallocated previously freed slice */
trash = g_slist_prepend (trash, mem);
}
release_trash_list (&trash, magazine_probes[j]);
g_assert_cmpint (k, <, MAX_PROBE_TRIALS); /* failed to reallocate slice */
}
/* mps[*] now contains pointers to reallocated slices */
/* ensure that we can allocate from known pages */
g_assert_true (allocate_from_known_page());
/* some cleanups */
for (j = 0; j < N_MAGAZINE_PROBES; j++)
g_slice_free1 (magazine_probes[j], mps[j]);
release_trash_list (&free_list, SAMPLE_SIZE);
}
int
main (int argc, char *argv[])
{
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/known_pages", test_slice_known_pages);
return g_test_run ();
}

View File

@ -1,153 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* We are testing some deprecated APIs here */
#ifndef GLIB_DISABLE_DEPRECATION_WARNINGS
#define GLIB_DISABLE_DEPRECATION_WARNINGS
#endif
#include <glib.h>
#define quick_rand32() \
(rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static guint prime_size = 1021; /* 769; 509 */
static guint number_of_blocks = 10000; /* total number of blocks allocated */
static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
static gboolean want_corruption = FALSE;
/* --- old memchunk prototypes (memchunks.c) --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline int
corruption (void)
{
if (G_UNLIKELY (want_corruption))
{
/* corruption per call likelyness is about 1:4000000 */
guint32 r = g_random_int() % 8000009;
return r == 277 ? +1 : r == 281 ? -1 : 0;
}
return 0;
}
static gpointer
test_sliced_mem_thread (gpointer data)
{
guint32 rand_accu = 2147483563;
guint i, j;
guint8 **ps;
guint *ss;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
GTimeVal rand_tv;
g_get_current_time (&rand_tv);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
ps = g_new (guint8*, number_of_blocks);
ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = g_slice_alloc (ss[i] + corruption());
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = g_slice_alloc (ss[i] + corruption());
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = g_slice_alloc (sz + corruption());
for (j = 0; j < k; j++)
g_slice_free1 (sz + corruption(), ps[j] + corruption());
}
g_free (ps);
g_free (ss);
return NULL;
}
static void
test_slice_malloc (void)
{
GThread **threads;
guint i, n_threads = 1;
g_test_message ("Starting %d threads allocating random blocks <= %u bytes",
n_threads, prime_size);
threads = g_alloca (sizeof(GThread*) * n_threads);
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create (test_sliced_mem_thread, NULL, TRUE, NULL);
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);
}
int
main (int argc,
char *argv[])
{
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE);
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/malloc", test_slice_malloc);
return g_test_run ();
}

View File

@ -1,167 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* We are testing some deprecated APIs here */
#ifndef GLIB_DISABLE_DEPRECATION_WARNINGS
#define GLIB_DISABLE_DEPRECATION_WARNINGS
#endif
#include <glib.h>
#define quick_rand32() \
(rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static const guint prime_size = 1021; /* 769; 509 */
static const gboolean clean_memchunks = FALSE;
static const guint number_of_blocks = 10000; /* total number of blocks allocated */
static const guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
/* --- old memchunk prototypes (memchunks.c) --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline gpointer
memchunk_alloc (GMemChunk **memchunkp,
guint size)
{
size = MAX (size, 1);
if (G_UNLIKELY (!*memchunkp))
*memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE);
return old_mem_chunk_alloc (*memchunkp);
}
static inline void
memchunk_free (GMemChunk *memchunk,
gpointer chunk)
{
old_mem_chunk_free (memchunk, chunk);
if (clean_memchunks)
old_mem_chunk_clean (memchunk);
}
static gpointer
test_memchunk_thread (gpointer data)
{
GMemChunk **memchunks;
guint i, j;
guint8 **ps;
guint *ss;
guint32 rand_accu = 2147483563;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
GTimeVal rand_tv;
g_get_current_time (&rand_tv);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
/* prepare for memchunk creation */
memchunks = g_newa0 (GMemChunk*, prime_size);
ps = g_new (guint8*, number_of_blocks);
ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
memchunk_free (memchunks[ss[i]], ps[i]);
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
memchunk_free (memchunks[ss[i]], ps[i]);
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = memchunk_alloc (&memchunks[sz], sz);
for (j = 0; j < k; j++)
memchunk_free (memchunks[sz], ps[j]);
}
/* cleanout memchunks */
for (i = 0; i < prime_size; i++)
if (memchunks[i])
old_mem_chunk_destroy (memchunks[i]);
g_free (ps);
g_free (ss);
return NULL;
}
static void
test_slice_memchunk (void)
{
GThread **threads;
guint i, n_threads = 1;
g_test_message ("Starting %d threads allocating random blocks <= %u bytes",
n_threads, prime_size);
threads = g_alloca (sizeof(GThread*) * n_threads);
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create (test_memchunk_thread, NULL, TRUE, NULL);
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);
}
int
main (int argc,
char *argv[])
{
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE);
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/memchunk", test_slice_memchunk);
return g_test_run ();
}

View File

@ -1,154 +0,0 @@
/* GLIB sliced memory - fast threaded memory chunk allocator
* Copyright (C) 2005 Tim Janik
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* We are testing some deprecated APIs here */
#ifndef GLIB_DISABLE_DEPRECATION_WARNINGS
#define GLIB_DISABLE_DEPRECATION_WARNINGS
#endif
#include <glib.h>
#define quick_rand32() \
(rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
static guint prime_size = 1021; /* 769; 509 */
static guint number_of_blocks = 10000; /* total number of blocks allocated */
static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */
static gboolean want_corruption = FALSE;
/* --- old memchunk prototypes (memchunks.c) --- */
GMemChunk* old_mem_chunk_new (const gchar *name,
gulong atom_size,
gulong area_size,
gint type);
void old_mem_chunk_destroy (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
void old_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem);
void old_mem_chunk_clean (GMemChunk *mem_chunk);
void old_mem_chunk_reset (GMemChunk *mem_chunk);
void old_mem_chunk_print (GMemChunk *mem_chunk);
void old_mem_chunk_info (void);
#ifndef G_ALLOC_AND_FREE
#define G_ALLOC_AND_FREE 2
#endif
/* --- functions --- */
static inline int
corruption (void)
{
if (G_UNLIKELY (want_corruption))
{
/* corruption per call likelyness is about 1:4000000 */
guint32 r = g_random_int() % 8000009;
return r == 277 ? +1 : r == 281 ? -1 : 0;
}
return 0;
}
static gpointer
test_sliced_mem_thread (gpointer data)
{
guint32 rand_accu = 2147483563;
guint i, j;
guint8 **ps;
guint *ss;
/* initialize random numbers */
if (data)
rand_accu = *(guint32*) data;
else
{
GTimeVal rand_tv;
g_get_current_time (&rand_tv);
rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
}
ps = g_new (guint8*, number_of_blocks);
ss = g_new (guint, number_of_blocks);
/* create number_of_blocks random sizes */
for (i = 0; i < number_of_blocks; i++)
ss[i] = quick_rand32() % prime_size;
/* allocate number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
ps[i] = g_slice_alloc (ss[i] + corruption());
for (j = 0; j < number_of_repetitions; j++)
{
/* free number_of_blocks/2 blocks */
for (i = 0; i < number_of_blocks; i += 2)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* allocate number_of_blocks/2 blocks with new sizes */
for (i = 0; i < number_of_blocks; i += 2)
{
ss[i] = quick_rand32() % prime_size;
ps[i] = g_slice_alloc (ss[i] + corruption());
}
}
/* free number_of_blocks blocks */
for (i = 0; i < number_of_blocks; i++)
g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
/* alloc and free many equally sized chunks in a row */
for (i = 0; i < number_of_repetitions; i++)
{
guint sz = quick_rand32() % prime_size;
guint k = number_of_blocks / 100;
for (j = 0; j < k; j++)
ps[j] = g_slice_alloc (sz + corruption());
for (j = 0; j < k; j++)
g_slice_free1 (sz + corruption(), ps[j] + corruption());
}
g_free (ps);
g_free (ss);
return NULL;
}
static void
test_slice_slab (void)
{
GThread **threads;
guint i, n_threads = 1;
g_test_message ("Starting %d threads allocating random blocks <= %u bytes",
n_threads, prime_size);
threads = g_alloca (sizeof(GThread*) * n_threads);
for (i = 0; i < n_threads; i++)
threads[i] = g_thread_create (test_sliced_mem_thread, NULL, TRUE, NULL);
for (i = 0; i < n_threads; i++)
g_thread_join (threads[i]);
}
int
main (int argc,
char *argv[])
{
g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE);
g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, TRUE);
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/slice/slab", test_slice_slab);
return g_test_run ();
}