docs: Remove commented out sections from GObject how-to

Unused, outdated, and unsalvagable.

https://bugzilla.gnome.org/show_bug.cgi?id=744060
This commit is contained in:
Philip Withnall 2015-02-20 12:54:05 +00:00
parent 0344e6cb83
commit f1287a9b2f

View File

@ -1424,407 +1424,5 @@ maman_file_write (MamanFile *self,
parameter types.
</para>
</sect1>
<!--
this is utterly wrong and should be completely removed - or rewritten
with a better example than writing a buffer using synchronous signals.
<sect1>
<title>How to provide more flexibility to users?</title>
<para>
The previous implementation does the job but the signal facility of
GObject can be used to provide even more flexibility to this file
change notification mechanism. One of the key ideas is to make the
process of writing data to the file part of the signal emission
process to allow users to be notified either before or after the
data is written to the file.
</para>
<para>
To integrate the process of writing the data to the file into the
signal emission mechanism, we can register a default class closure
for this signal which will be invoked during the signal emission,
just like any other user-connected signal handler.
</para>
<para>
The first step to implement this idea is to change the signature of
the signal: we need to pass around the buffer to write and its size.
To do this, we use our own marshaller which will be generated
through GLib's glib-genmarshal tool. We thus create a file named <filename>marshall.list</filename> which contains
the following single line:
<informalexample><programlisting>
VOID:POINTER,UINT
</programlisting></informalexample>
and use the Makefile provided in <filename>sample/signal/Makefile</filename> to generate the file named
<filename>maman-file-complex-marshall.c</filename>. This C file is finally included in
<filename>maman-file-complex.c</filename>.
</para>
<para>
Once the marshaller is present, we register the signal and its marshaller in the class_init function
of the object <type>MamanFileComplex</type> (full source for this object is included in
<filename>sample/signal/maman-file-complex.{h|c}</filename>):
<informalexample><programlisting>
GClosure *default_closure;
GType param_types[2];
default_closure = g_cclosure_new (G_CALLBACK (default_write_signal_handler),
(gpointer)0xdeadbeaf /* user_data */,
NULL /* destroy_data */);
param_types[0] = G_TYPE_POINTER;
param_types[1] = G_TYPE_UINT;
klass->write_signal_id =
g_signal_newv ("write",
G_TYPE_FROM_CLASS (g_class),
G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
default_closure /* class closure */,
NULL /* accumulator */,
NULL /* accu_data */,
maman_file_complex_VOID__POINTER_UINT,
G_TYPE_NONE /* return_type */,
2 /* n_params */,
param_types /* param_types */);
</programlisting></informalexample>
The code shown above first creates the closure which contains the code to complete the file write. This
closure is registered as the default class_closure of the newly created signal.
</para>
<para>
Of course, you need to implement completely the code for the default closure since I just provided
a skeleton:
<informalexample><programlisting>
static void
default_write_signal_handler (GObject *obj, guint8 *buffer, guint size, gpointer user_data)
{
g_assert (user_data == (gpointer)0xdeadbeaf);
/* Here, we trigger the real file write. */
g_print ("default signal handler: 0x%x %u\n", buffer, size);
}
</programlisting></informalexample>
</para>
<para>
Finally, the client code must invoke the <function>maman_file_complex_write</function> function which
triggers the signal emission:
<informalexample><programlisting>
void maman_file_complex_write (MamanFileComplex *self, guint8 *buffer, guint size)
{
/* trigger event */
g_signal_emit (self,
MAMAN_FILE_COMPLEX_GET_CLASS (self)->write_signal_id,
0, /* details */
buffer, size);
}
</programlisting></informalexample>
</para>
<para>
The client code (as shown in <filename>sample/signal/test.c</filename> and below) can now connect signal handlers before
and after the file write is completed: since the default signal handler which does the write itself runs during the
RUN_LAST phase of the signal emission, it will run after all handlers connected with <function><link linkend="g-signal-connect">g_signal_connect</link></function>
and before all handlers connected with <function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function>. If you intent to write a GObject
which emits signals, I would thus urge you to create all your signals with the G_SIGNAL_RUN_LAST such that your users
have a maximum of flexibility as to when to get the event. Here, we combined it with G_SIGNAL_NO_RECURSE and
G_SIGNAL_NO_HOOKS to ensure our users will not try to do really weird things with our GObject. I strongly advise you
to do the same unless you really know why (in which case you really know the inner workings of GSignal by heart and
you are not reading this).
</para>
<para>
<informalexample><programlisting>
static void complex_write_event_before (GObject *file, guint8 *buffer, guint size, gpointer user_data)
{
g_assert (user_data == NULL);
g_print ("Complex Write event before: 0x%x, %u\n", buffer, size);
}
static void complex_write_event_after (GObject *file, guint8 *buffer, guint size, gpointer user_data)
{
g_assert (user_data == NULL);
g_print ("Complex Write event after: 0x%x, %u\n", buffer, size);
}
static void test_file_complex (void)
{
guint8 buffer[100];
GObject *file;
file = g_object_new (MAMAN_FILE_COMPLEX_TYPE, NULL);
g_signal_connect (G_OBJECT (file), "write",
(GCallback)complex_write_event_before,
NULL);
g_signal_connect_after (G_OBJECT (file), "write",
(GCallback)complex_write_event_after,
NULL);
maman_file_complex_write (MAMAN_FILE_COMPLEX (file), buffer, 50);
g_object_unref (G_OBJECT (file));
}
</programlisting></informalexample>
The code above generates the following output on my machine:
<programlisting>
Complex Write event before: 0xbfffe280, 50
default signal handler: 0xbfffe280 50
Complex Write event after: 0xbfffe280, 50
</programlisting>
</para>
-->
<!--
this is also utterly wrong on so many levels that I don't even want
to enumerate them. it's also full of completely irrelevant footnotes
about personal preferences demonstrating a severe lack of whatsoever
clue. the whole idea of storing the signal ids inside the Class
structure is so fundamentally flawed that I'll require a frontal
lobotomy just to forget I've ever seen it.
<sect2>
<title>How most people do the same thing with less code</title>
<para>For many historic reasons related to how the ancestor of GObject used to work in GTK+ 1.x versions,
there is a much <emphasis>simpler</emphasis>
<footnote>
<para>I personally think that this method is horribly mind-twisting: it adds a new indirection
which unnecessarily complicates the overall code path. However, because this method is widely used
by all of GTK+ and GObject code, readers need to understand it. The reason why this is done that way
in most of GTK+ is related to the fact that the ancestor of GObject did not provide any other way to
create a signal with a default handler than this one. Some people have tried to justify that it is done
that way because it is better, faster (I am extremely doubtful about the faster bit. As a matter of fact,
the better bit also mystifies me ;-). I have the feeling no one really knows and everyone does it
because they copy/pasted code from code which did the same. It is probably better to leave this
specific trivia to hacker legends domain...
</para>
</footnote>
way to create a signal with a default handler than to create
a closure by hand and to use the <function><link linkend="g-signal-newv">g_signal_newv</link></function>.
</para>
<para>For example, <function><link linkend="g-signal-new">g_signal_new</link></function> can be used to create a signal which uses a default
handler which is stored in the class structure of the object. More specifically, the class structure
contains a function pointer which is accessed during signal emission to invoke the default handler and
the user is expected to provide to <function><link linkend="g-signal-new">g_signal_new</link></function> the offset from the start of the
class structure to the function pointer.
<footnote>
<para>I would like to point out here that the reason why the default handler of a signal is named everywhere
a class_closure is probably related to the fact that it used to be really a function pointer stored in
the class structure.
</para>
</footnote>
</para>
<para>The following code shows the declaration of the <type>MamanFileSimple</type> class structure which contains
the <function>write</function> function pointer.
<informalexample><programlisting>
struct _MamanFileSimpleClass {
GObjectClass parent;
guint write_signal_id;
/* signal default handlers */
void (*write) (MamanFileSimple *self, guint8 *buffer, guint size);
};
</programlisting></informalexample>
The <function>write</function> function pointer is initialized in the class_init function of the object
to <function>default_write_signal_handler</function>:
<informalexample><programlisting>
static void
maman_file_simple_class_init (gpointer g_class,
gpointer g_class_data)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (g_class);
MamanFileSimpleClass *klass = MAMAN_FILE_SIMPLE_CLASS (g_class);
klass->write = default_write_signal_handler;
</programlisting></informalexample>
Finally, the signal is created with <function><link linkend="g-signal-new">g_signal_new</link></function> in the same class_init function:
<informalexample><programlisting>
klass->write_signal_id =
g_signal_new ("write",
G_TYPE_FROM_CLASS (g_class),
G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
G_STRUCT_OFFSET (MamanFileSimpleClass, write),
NULL /* accumulator */,
NULL /* accu_data */,
maman_file_complex_VOID__POINTER_UINT,
G_TYPE_NONE /* return_type */,
2 /* n_params */,
G_TYPE_POINTER,
G_TYPE_UINT);
</programlisting></informalexample>
Of note, here, is the 4th argument to the function: it is an integer calculated by the <function><link linkend="G-STRUCT-OFFSET">G_STRUCT_OFFSET</link></function>
macro which indicates the offset of the member <emphasis>write</emphasis> from the start of the
<type>MamanFileSimpleClass</type> class structure.
<footnote>
<para>GSignal uses this offset to create a special wrapper closure
which first retrieves the target function pointer before calling it.
</para>
</footnote>
</para>
<para>
While the complete code for this type of default handler looks less cluttered as shown in
<filename>sample/signal/maman-file-simple.{h|c}</filename>, it contains numerous subtleties.
The main subtle point which everyone must be aware of is that the signature of the default
handler created that way does not have a user_data argument:
<function>default_write_signal_handler</function> is different in
<filename>sample/signal/maman-file-complex.c</filename> and in
<filename>sample/signal/maman-file-simple.c</filename>.
</para>
<para>If you have doubts about which method to use, I would advise you to use the second one which
involves <function><link linkend="g-signal-new">g_signal_new</link></function> rather than <function><link linkend="g-signal-newv">g_signal_newv</link></function>:
it is better to write code which looks like the vast majority of other GTK+/GObject code than to
do it your own way. However, now, you know why.
</para>
</sect2>
</sect1>
-->
<!--
yet another pointless section. if we are scared of possible abuses
from the users then we should not be mentioning it inside a tutorial
for beginners. but, obviously, there's nothing to be afraid of - it's
just that this section must be completely reworded.
<sect1>
<title>How users can abuse signals (and why some think it is good)</title>
<para>Now that you know how to create signals to which the users can connect easily and at any point in
the signal emission process thanks to <function><link linkend="g-signal-connect">g_signal_connect</link></function>,
<function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function> and G_SIGNAL_RUN_LAST, it is time to look into how your
users can and will screw you. This is also interesting to know how you too, can screw other people.
This will make you feel good and eleet.
</para>
<para>
The users can:
<itemizedlist>
<listitem><para>stop the emission of the signal at anytime</para></listitem>
<listitem><para>override the default handler of the signal if it is stored as a function
pointer in the class structure (which is the preferred way to create a default signal handler,
as discussed in the previous section).</para></listitem>
</itemizedlist>
</para>
<para>
In both cases, the original programmer should be as careful as possible to write code which is
resistant to the fact that the default handler of the signal might not able to run. This is obviously
not the case in the example used in the previous sections since the write to the file depends on whether
or not the default handler runs (however, this might be your goal: to allow the user to prevent the file
write if he wishes to).
</para>
<para>
If all you want to do is to stop the signal emission from one of the callbacks you connected yourself,
you can call <function><link linkend="g-signal-stop-by-name">g_signal_stop_by_name</link></function>. Its use is very simple which is why I won't detail
it further.
</para>
<para>
If the signal's default handler is just a virtual function pointer, it is also possible to override
it yourself from the class_init function of a type which derives from the parent. That way, when the signal
is emitted, the parent class will use the function provided by the child as a signal default handler.
Of course, it is also possible (and recommended) to chain up from the child to the parent's default signal
handler to ensure the integrity of the parent object.
</para>
<para>
Overriding a class method and chaining up was demonstrated in <xref linkend="howto-gobject-methods"/>
which is why I won't bother to show exactly how to do it here again.
</para>
</sect1>
-->
</chapter>
<!--
<sect2>
<title>Warning on signal creation and default closure</title>
<para>
Most of the existing code I have seen up to now (in both GTK+, GNOME libraries and
many GTK+ and GNOME applications) using signals uses a small
variation of the default handler pattern I have shown in the previous section.
</para>
<para>
Usually, the <function><link linkend="g-signal-new">g_signal_new</link></function> function is preferred over
<function><link linkend="g-signal-newv">g_signal_newv</link></function>. When <function><link linkend="g-signal-new">g_signal_new</link></function>
is used, the default closure is exported as a virtual function. For example,
<filename>gobject.h</filename> contains the declaration of <link linkend="GObjectClass"><type>GObjectClass</type></link>
whose notify virtual function is the default handler for the <emphasis>notify</emphasis>
signal:
<informalexample><programlisting>
struct _GObjectClass
{
GTypeClass g_type_class;
/* class methods and other stuff. */
/* signals */
void (*notify) (GObject *object,
GParamSpec *pspec);
};
</programlisting></informalexample>
</para>
<para>
<filename>gobject.c</filename>'s <function><link linkend="g-object-do-class-init">g_object_do_class_init</link></function> function
registers the <emphasis>notify</emphasis> signal and initializes this virtual function
to NULL:
<informalexample><programlisting>
static void
g_object_do_class_init (GObjectClass *class)
{
/* Stuff */
class->notify = NULL;
gobject_signals[NOTIFY] =
g_signal_new ("notify",
G_TYPE_FROM_CLASS (class),
G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS,
G_STRUCT_OFFSET (GObjectClass, notify),
NULL, NULL,
g_cclosure_marshal_VOID__PARAM,
G_TYPE_NONE,
1, G_TYPE_PARAM);
}
</programlisting></informalexample>
<function><link linkend="g-signal-new">g_signal_new</link></function> creates a <link linkend="GClosure"><type>GClosure</type></link> which dereferences the
type's class structure to access the virtual function pointer and invoke it if it not NULL. The
virtual function is ignored it is set to NULL.
</para>
<para>
To understand the reason for such a complex scheme to access the signal's default handler,
you must remember the whole reason for the use of these signals. The goal here is to delegate
a part of the process to the user without requiring the user to subclass the object to override
one of the virtual functions. The alternative to subclassing, that is, the use of signals
to delegate processing to the user, is, however, a bit less optimal in terms of speed: rather
than just dereferencing a function pointer in a class structure, you must start the whole
process of signal emission which is a bit heavyweight.
</para>
<para>
This is why some people decided to use virtual functions for some signal's default handlers:
rather than having users connect a handler to the signal and stop the signal emission
from within that handler, you just need to override the default virtual function which is
supposedly more efficient.
</para>
</sect2>
-->
</part>