We now guarantee that GObjects will always be allocated at least as
aligned as the basic types. If you want to put an element in your
GObject which has higher alignment requirements, we can’t guarantee it
will be aligned*. If you need it to be aligned, you’ll need to put it on
the heap (aligned appropriately), or add appropriate padding in your
GObject struct.
*Actually, GSlice will guarantee that the whole GObject is aligned to at
least the power of 2 greater than or equal to the size of the GObject,
which means any element in the GObject struct should always be
appropriate aligned if the compiler pads it appropriately. If malloc()
is used, however, it doesn’t make that guarantee, so we can’t make that
guarantee overall.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Helps: #1231
Regardless of the actual alignment of the GTypeInstance in question,
these do a runtime check on the type, so if the type was originally
aligned correctly when allocated, it should be aligned correctly if the
type check succeeds. -Wcast-align is meant to warn about casts between
types, which this isn’t (if the check succeeds).
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Fixes: #1231
See the reasoning in the patch for why we believe GObjects *are*
(already) as aligned as the basic types.
We want to make this guarantee so that it’s guaranteed to be safe for
people to ignore -Wcast-align warnings for GObjects which contain basic
types. This typically happens with gdouble on 32-bit ARM platforms.
The checks are slightly complicated by the need to support GObjects with
custom constructors. We should expect that a custom construction
function will chain up to g_object_constructor (which calls
g_type_create_instance() as normal), but it’s possible that someone has
done something crazy and uses a custom allocator which doesn’t return
with the same alignment as GSlice. Hand them a warning in that case. If
that is true, the code which uses their custom-constructed GObject can
presumably already deal with the alignment it gets given.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Helps: #1231
When an object with toggle reference is notifying a change we just
assume that this is true because of previous checks.
However, while locking, another thread may have removed the toggle
reference causing the waiting thread to abort (as no handler is set at
that point).
To avoid this, once we've got the toggle references mutex lock, check
again if the object has toggle reference, and if it's not the case
anymore just ignore the request.
Add a test that triggers this, it's not 100% happening because this is
of course timing related, but this is very close to the truth.
Fixes: #2394
The previous wording was not clear about what happens if a new weak ref
is taken during disposal (shortly after resurrecting the object with a
new strong ref, otherwise taking the weak ref is invalid).
See: https://gitlab.gnome.org/GNOME/glib/-/merge_requests/2064/diffs#note_1270092
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Helps: #2390
No need to call memset in the loop, we can just
initialize all the values in one go.
GtkBuilder is now using g_object_setv, so this
may improve application start times a bit.
As per the previous change, an object that had weak locations set may
need to lock again the weak locations mutex during qdata cleanup, but
we can avoid this when we know we're removing the last location, by
removing the qdata entry and freeing the data.
In case a new location is needed for the same object, new data will be
added.
However, by doing this the weak locations during dispose may be
invalidated once the weak locations lock is passed, so check again if
this is the case while removing them.
It can happen that a GWeakRef is added to an object while it's disposing
(or even during finalizing) and this may happen in a thread that (weak)
references an object while the disposal isn't completed yet or when
using toggle references and switching to GWeakRef on notification (as
the API suggests).
In such scenario the weak locations are not cleaned up when the object
is finalized, and will point to a free'd area.
So, during finalization and when we're sure that the object will be
destroyed for sure, check again if there are new weak locations and
unset them if any as part of the qdata destruction.
Do this adding a new utility function so that we can avoid duplicating
code to free the weak locations.
Added various tests simulating this case.
Fixes: #2390
The documentation sort of already said this, but it’s better to make it
explicit.
This avoids the situation where some of the weak notify callbacks for an
object have been called, and then a subsequent one resurrects the
object. Without some way of undoing the weak notifications already sent,
that would leave external state which is coupled to the object’s
lifecycle out of sync.
This arose from discussion on !2064.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
GTK currently checks if a GtkWidget is finalized while still using a
floating reference—i.e. a widget was disposed without any parent
container owning it.
This warning can be useful to identify and trace ownership transfer
issues in libraries using initially unowned floating object types.
To avoid introducing constraints ex post, we can gate this check behind
both the G_ENABLE_DEBUG compile time flag for GLib, and behind the
G_ENABLE_DIAGNOSTIC environment variable run time check.
Fixes: #2489
When rendering the contents of the GLib documentation stored inside the
introspection data, a common behaviour is to take the first paragraph as
a summary of the symbol being documented.
The documentation is assumed to be in Markdown format, which means:
- paragraphs must be separated by newlines
- lines that have an indentation of four or more spaces are considered
code blocks
- lines that start with a `#` are considered titles
This means we need to slightly tweak the documentation in our sources to
ensure that it can be rendered appropriately by tools that are not
gtk-doc.
See issue: #2365
We want to have the ability to mark types that should not be derivable
even if they are in a deeply derivable type hierarchy; in other words,
leaf nodes in the types tree.
This works in the same way as g_variant_take_ref(), and for the same
reason.
Updated and Rebased by Nitin Wartkar <nitinwartkar58@gmail.com>
Closes#1112
gjs has some situations where it's not always aware of the @data that
was passed into g_object_add_toggle_ref, so allow passing %NULL to
just match on @notify.
Rebased and updated by Nitin Wartkar
Closes#817
It is cleaner to define glib_typeof() in a header included after
gversionmacros.h so we can use GLIB_VERSION_MIN_REQUIRED directly
instead of doing it everywhere glib_typeof() is used.
Include the base URI in the `g_test_bug()` calls instead. This resolves
inconsistencies between the old bug base (bugzilla.gnome.org) and the
new bug base (gitlab.gnome.org). It also has the advantage that the URI
passed to `g_test_bug()` is now clickable in the code editor, rather
than being split across two locations.
See https://gitlab.gnome.org/GNOME/glib/-/merge_requests/275#note_303175
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Teach `glib-mkenums` how to parse and ignore:
- `GLIB_AVAILABLE_ENUMERATOR_IN_x_xx`
- `GLIB_DEPRECATED_ENUMERATOR_IN_x_xx`
- `GLIB_DEPRECATED_ENUMERATOR_IN_x_xx_FOR(x)`
Future work could expose the deprecation/availability information as
substitutions in the template file, but this commit does not do that.
It does, however, add some unit tests for the annotations.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Fixes: #2327
Close output file to ensure all buffered output actually gets written.
Otherwise, glib-genmarshal output is sometimes empty (for example, when trying
to build gdk-pixbuf on Windows, with Meson installed from .msi package).
argparse.FileType doesn't get closed automagically when the script exits:
https://bugs.python.org/issue13824
Fixes https://gitlab.gnome.org/GNOME/glib/-/issues/2341
When included inside an `extern "C"` block, this causes build failures
that look something like:
/usr/include/c++/10/type_traits:2930:3: error: template with C linkage
2930 | template<typename _Fn, typename... _Args>
| ^~~~~~~~
../../disas/arm-a64.cc:20:1: note: ‘extern "C"’ linkage started here
20 | extern "C" {
| ^~~~~~~~~~
Commit 4273c43902 made this opt in for
projects which are defining `GLIB_VERSION_MIN_REQUIRED`, but the include
of `<type_traits>` via `gmacros.h` was not included in this. If we move
the include out to the places where `glib_typeof` is called, we can make
it covered by this macro too, and save a few consumers from FTBFSing.
That also means that, if you don't want to fix your use of the headers,
and as long as this version is sufficient for you, a quick workaround is
to define `GLIB_VERSION_MIN_REQUIRED` to `GLIB_VERSION_2_66` or lower.
Suggested by Simon McVittie.
Alternative to: https://gitlab.gnome.org/GNOME/glib/-/merge_requests/1935
Fixes: https://gitlab.gnome.org/GNOME/glib/-/issues/2331
Convert all the call sites which use `g_memdup()`’s length argument
trivially (for example, by passing a `sizeof()`), so that they use
`g_memdup2()` instead.
In almost all of these cases the use of `g_memdup()` would not have
caused problems, but it will soon be deprecated, so best port away from
it.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Helps: #2319