This especially has the effect that any GWeakRefs to the object will not
necessarily be set to NULL yet if called as part of
g_object_run_dispose() and not as part of g_object_unref().
gobject/gobject.c: In function ‘g_object_new_internal’:
gobject/gobject.c:1962:25: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘guint’ {aka ‘unsigned int’}
1962 | for (j = 0; j < n_params; j++)
| ^
gobject/gobject.c:1989:21: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘guint’ {aka ‘unsigned int’}
1989 | for (i = 0; i < n_params; i++)
| ^
gobject/gobject.c: In function ‘g_object_new_with_custom_constructor’:
gobject/gobject.c:1836:21: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘guint’ {aka ‘unsigned int’}
1836 | for (j = 0; j < n_params; j++)
| ^
gobject/gobject.c:1914:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘guint’ {aka ‘unsigned int’}
1914 | for (i = 0; i < n_params; i++)
| ^
gobject/gobject.c: In function ‘g_object_class_install_properties’:
gobject/gobject.c:766:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘guint’ {aka ‘unsigned int’}
766 | for (i = 1; i < n_pspecs; i++)
| ^
These variables were already (correctly) accessed atomically. The
`volatile` qualifier doesn’t help with that.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Helps: #600
The previous code consumed a larger additional amount of stack space.
That is because it would allocate the temporary buffer for GValues on
the stack with "g_newa (GValue, 1)" and thus the required stack
space grew with the number of arguments. Granted, this is already
a variadic C function, so the caller already placed that many elements
on the stack. For example, on the stack there are the property names
and the pointers to the arguments, which should amount to roughly
O(n_args * 16) (on 64 bit, with pointers being 8 bytes large).
That is not bad, because it means in the previous version the stack space
would grow linear with the already used stack space. However, a GValue is
an additional 24 bytes (on 64 bit), which probably more than doubles the
required stack space. Let's avoid that, by allocating the temporary list
on the heap after a certain threshold. This probably more than doubles the
number of possible arguments before the stack overflows.
Also, previously the heap allocated "params" array only grew one element
per iteration. Of course, it is likely that libc anyway reallocates
the buffers by growing the space exponentially. So realloc(ptr, 1)
probably does not O() scale worse than doubling the buffer sizes ourselves.
However, it seems clearer to keep track of the allocated sizes ourself, and
only call realloc() when we determine that we are out of space.
Especially because we need to update the value pointers on reallocation.
Note that we now require a heap allocation both for the "params" and the
"values" list. Theoretically that could be combined by using one buffer
for both. But that would make the code more complicated.
Now we pre-allocate buffers for 16 elements on the stack. That
is (16 * (16 + 24) bytes (or 640 bytes) on the stack. I think that
is still acceptable.
Two out of three callers pass the count argument from a variable
of type guint. And the third is currently an always positive gint.
We should use the correct integer type that matches the type as it
used otherwise.
Rather than using a mixture of ‘instantiable’ and ‘instantiatable’
everywhere, standardise on the term which is already in the public API.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
This was mostly machine generated with the following command:
```
codespell \
--builtin clear,rare,usage \
--skip './po/*' --skip './.git/*' --skip './NEWS*' \
--write-changes .
```
using the latest git version of `codespell` as per [these
instructions](https://github.com/codespell-project/codespell#user-content-updating).
Then I manually checked each change using `git add -p`, made a few
manual fixups and dropped a load of incorrect changes.
There are still some outdated or loaded terms used in GLib, mostly to do
with git branch terminology. They will need to be changed later as part
of a wider migration of git terminology.
If I’ve missed anything, please file an issue!
Signed-off-by: Philip Withnall <withnall@endlessm.com>
The various `g_strdup_printf()` returns values in the implementations of GValue
lcopy_func are runtime checks which could be disabled if one wants and therefore
should be handled as such with g_return_val_if_fail()
Rename the variables involved so that people get a slightly more
obvious critical warning when they try to ref an object which has
already been finalised.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
As with `g_variant_new()` (or any varargs function which takes integer
literals of differing widths), callers need to be careful to ensure
their integer literals have the right width.
Tweak the documentation for `g_object_new()`, `g_object_set()` and
`g_object_get()` to clarify this. The documentation for `g_object_get()`
shows that it is not subject to the same caveats, since it operates on
pointers.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Closes: #833
This uses a 32bit hole in the GObject structure on 64bit arches
as a flag field which can be optionally used for some preformance hints.
Currently there is a flag that gets set any time you connect to a signal
on a GObject which is used as early bailout for signal emissions, and using
the flags field instead of a user-data for checking if a GObject is
under construction.
"Uninitialized value" is partially correct, since it has not been
initialized with a type, but it's more precise to say
"zero-initialized value". It is still a programming error to pass a
pointer to uninitialized memory with arbitrary contents as the value.
Signed-off-by: Simon McVittie <smcv@collabora.com>
Using the generic marshaller has drawbacks beyond performance. One such
drawback is that it breaks the stack unwinding from the Linux kernel due
to having unsufficient data to walk past ffi_call_unixt64. That means that
performance profiling by application developers looks grouped among
seemingly unrelated code paths.
Related to GNOME/Initiatives#10
We already have the GType with which the GValue should be initialized,
so requiring an initialized GValue is not really necessary, and it
actually complicates code that wraps GObject, by requiring the retrieval
of the GParamSpec in order to get the property type. Additionally, it
introduces a mostly unnecessary g_value_reset().
We already changed g_object_getv() to allow passing uninitialized
GValues, but this fell through the cracks.
Closes: #737
These have all been documented as deprecated for a long time, but we’ve
never had a way to programmatically mark them as deprecated. Do that
now.
This is based on the list of deprecations from the reverted commit
80fcb1bc2.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Fixes: #638
g_object_set_data() should only ever be used with a small, bounded set
of keys, or the memory usage of the quark lookup table will grow
unbounded. Document that.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
Fixes: #682
I'm trying to use `-fsanitize=thread` for OSTree, and some of
these issues seem to go into GLib. Also, the sanitizers work better if
the userspace libraries are built with them too.
This fix is similar to
b6814bb37c
Mixing atomic and non-atomic reads trips TSAN, so let's change the
assertions to operate on the local values returned from atomic
read/writes.
Without this change I couldn't even *build* GLib with TSAN, since we
use gresources during compilation, which uses GSubprocess, which hits
this code.
(Minor review fixes made by Philip Withnall <withnall@endlessm.com>.)
https://gitlab.gnome.org/GNOME/glib/issues/1224
An assertion is harder to skip over, and using a g_critical() can give
us a more informative error message.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
https://gitlab.gnome.org/GNOME/glib/issues/179
The implementation is silently discarding this anyway, and
g_object_unref() is using atomic operations. So this should be safe.
Having this here triggers -Wdiscarded-qualifiers when g_clear_pointer()
is fixed to use __typeof__().
The implementation is silently discarding this anyway, and
g_object_unref() is using atomic operations. So this should be safe.
Having this here triggers -Wdiscarded-qualifiers when g_clear_pointer()
is fixed to use __typeof__().
There is no transfer annotation that can express transfer semantics of
g_object_new_with_properties in general. When GInitiallyUnowned object
is constructed the introspection data will be incorrect.
Mark it with skip annotation.
https://bugzilla.gnome.org/show_bug.cgi?id=795025
Currently, g_object_ref() and g_object_ref_sink() return a
gpointer which can mask issues when assigning to fields or
returning from a function.
To help catch these type of programming errors, we can propagate
the type of the parameter through the function call on GCC
using the typeof() C language extension.
This will cause offending code to have a warning, but will
continue to be source and binary compatible.
This is only enabled when GLIB_VERSION_MAX_ALLOWED is 2.56 or greater.
https://bugzilla.gnome.org/show_bug.cgi?id=790697
Where we were already treating GHashTables as sets, modify them to use
the set-specific APIs g_hash_table_add() and g_hash_table_contains(), to
make that usage more obvious and less prone to being broken.
Heavily based on patches by Garrett Regier <garrettregier@gmail.com>.
Signed-off-by: Philip Withnall <withnall@endlessm.com>
https://bugzilla.gnome.org/show_bug.cgi?id=749371