glib/gasyncqueue.c
Sebastian Wilhelmi 632943f359 Look for nanosleep function.
2001-06-07  Sebastian Wilhelmi  <wilhelmi@ira.uka.de>

	* configure.in: Look for nanosleep function.

	* gtimer.c: Use nanosleep for g_usleep, when found.

	* gtimer.c, gtimer.h: Add g_time_val_add function. Closes #54271.

	* gasyncqueue.c: Documentation updates.

	* gthreadpool.c: Use g_time_val_add now that we have it.

	* glib/glib-sections.txt, glib/tmpl/date.sgml: Add g_time_val_add.

	* glib/tmpl/threads.sgml: Updated.
2001-06-07 13:46:14 +00:00

444 lines
11 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* GAsyncQueue: asynchronous queue implementation, based on Gqueue.
* Copyright (C) 2000 Sebastian Wilhelmi; University of Karlsruhe
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* MT safe
*/
#include "glib.h"
struct _GAsyncQueue
{
GMutex *mutex;
GCond *cond;
GQueue *queue;
guint waiting_threads;
guint ref_count;
};
/**
* g_async_queue_new:
*
* Creates a new asynchronous queue with the initial reference count of 1.
*
* Return value: the new #GAsyncQueue.
**/
GAsyncQueue*
g_async_queue_new ()
{
GAsyncQueue* retval = g_new (GAsyncQueue, 1);
retval->mutex = g_mutex_new ();
retval->cond = g_cond_new ();
retval->queue = g_queue_new ();
retval->waiting_threads = 0;
retval->ref_count = 1;
return retval;
}
/**
* g_async_queue_ref:
* @queue: a #GAsyncQueue.
*
* Increases the reference count of the asynchronous @queue by 1.
**/
void
g_async_queue_ref (GAsyncQueue *queue)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_mutex_lock (queue->mutex);
queue->ref_count++;
g_mutex_unlock (queue->mutex);
}
/**
* g_async_queue_ref_unlocked:
* @queue: a #GAsyncQueue.
*
* Increases the reference count of the asynchronous @queue by 1. This
* function must be called while holding the @queue's lock.
**/
void
g_async_queue_ref_unlocked (GAsyncQueue *queue)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
queue->ref_count++;
}
/**
* g_async_queue_unref_and_unlock:
* @queue: a #GAsyncQueue.
*
* Decreases the reference count of the asynchronous @queue by 1 and
* releases the lock. This function must be called while holding the
* @queue's lock. If the reference count went to 0, the @queue will be
* destroyed and the memory allocated will be freed. So you are not
* allowed to use the @queue afterwards, as it might have disappeared.
* The obvious asymmetry (it is not named
* g_async_queue_unref_unlocked) is because the queue can't be
* unlocked after dereffing it, as it might already have disappeared.
**/
void
g_async_queue_unref_and_unlock (GAsyncQueue *queue)
{
gboolean stop;
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
queue->ref_count--;
stop = (queue->ref_count == 0);
g_mutex_unlock (queue->mutex);
if (stop)
{
g_return_if_fail (queue->waiting_threads == 0);
g_mutex_free (queue->mutex);
g_cond_free (queue->cond);
g_queue_free (queue->queue);
g_free (queue);
}
}
/**
* g_async_queue_unref:
* @queue: a #GAsyncQueue.
*
* Decreases the reference count of the asynchronous @queue by 1. If
* the reference count went to 0, the @queue will be destroyed and the
* memory allocated will be freed. So you are not allowed to use the
* @queue afterwards, as it might have disappeared.
**/
void
g_async_queue_unref (GAsyncQueue *queue)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_mutex_lock (queue->mutex);
g_async_queue_unref_and_unlock (queue);
}
/**
* g_async_queue_lock:
* @queue: a #GAsyncQueue.
*
* Acquire the @queue's lock. After that you can only call the
* g_async_queue_*_unlocked function variants on that
* @queue. Otherwise it will deadlock.
**/
void
g_async_queue_lock (GAsyncQueue *queue)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_mutex_lock (queue->mutex);
}
/**
* g_async_queue_unlock:
* @queue: a #GAsyncQueue.
*
* Release the queue's lock.
**/
void
g_async_queue_unlock (GAsyncQueue *queue)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_mutex_unlock (queue->mutex);
}
/**
* g_async_queue_push:
* @queue: a #GAsyncQueue.
* @data: @data to push into the @queue.
*
* Push the @data into the @queue. @data must not be #NULL.
**/
void
g_async_queue_push (GAsyncQueue* queue, gpointer data)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_return_if_fail (data);
g_mutex_lock (queue->mutex);
g_async_queue_push_unlocked (queue, data);
g_mutex_unlock (queue->mutex);
}
/**
* g_async_queue_push_unlocked:
* @queue: a #GAsyncQueue.
* @data: @data to push into the @queue.
*
* Push the @data into the @queue. @data must not be #NULL. This
* function must be called while holding the @queue's lock.
**/
void
g_async_queue_push_unlocked (GAsyncQueue* queue, gpointer data)
{
g_return_if_fail (queue);
g_return_if_fail (queue->ref_count > 0);
g_return_if_fail (data);
g_queue_push_head (queue->queue, data);
g_cond_signal (queue->cond);
}
static gpointer
g_async_queue_pop_intern_unlocked (GAsyncQueue* queue, gboolean try,
GTimeVal *end_time)
{
gpointer retval;
if (!g_queue_peek_tail (queue->queue))
{
if (try)
return NULL;
if (!end_time)
{
queue->waiting_threads++;
while (!g_queue_peek_tail (queue->queue))
g_cond_wait(queue->cond, queue->mutex);
queue->waiting_threads--;
}
else
{
queue->waiting_threads++;
while (!g_queue_peek_tail (queue->queue))
if (!g_cond_timed_wait (queue->cond, queue->mutex, end_time))
break;
queue->waiting_threads--;
if (!g_queue_peek_tail (queue->queue))
return NULL;
}
}
retval = g_queue_pop_tail (queue->queue);
g_assert (retval);
return retval;
}
/**
* g_async_queue_pop:
* @queue: a #GAsyncQueue.
*
* Pop data from the @queue. This function blocks until data become
* available.
*
* Return value: data from the queue.
**/
gpointer
g_async_queue_pop (GAsyncQueue* queue)
{
gpointer retval;
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
g_mutex_lock (queue->mutex);
retval = g_async_queue_pop_intern_unlocked (queue, FALSE, NULL);
g_mutex_unlock (queue->mutex);
return retval;
}
/**
* g_async_queue_pop_unlocked:
* @queue: a #GAsyncQueue.
*
* Pop data from the @queue. This function blocks until data become
* available. This function must be called while holding the @queue's
* lock.
*
* Return value: data from the queue.
**/
gpointer
g_async_queue_pop_unlocked (GAsyncQueue* queue)
{
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
return g_async_queue_pop_intern_unlocked (queue, FALSE, NULL);
}
/**
* g_async_queue_try_pop:
* @queue: a #GAsyncQueue.
*
* Try to pop data from the @queue. If no data is available, #NULL is
* returned.
*
* Return value: data from the queue or #NULL, when no data is
* available immediately.
**/
gpointer
g_async_queue_try_pop (GAsyncQueue* queue)
{
gpointer retval;
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
g_mutex_lock (queue->mutex);
retval = g_async_queue_pop_intern_unlocked (queue, TRUE, NULL);
g_mutex_unlock (queue->mutex);
return retval;
}
/**
* g_async_queue_try_pop_unlocked:
* @queue: a #GAsyncQueue.
*
* Try to pop data from the @queue. If no data is available, #NULL is
* returned. This function must be called while holding the @queue's
* lock.
*
* Return value: data from the queue or #NULL, when no data is
* available immediately.
**/
gpointer
g_async_queue_try_pop_unlocked (GAsyncQueue* queue)
{
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
return g_async_queue_pop_intern_unlocked (queue, TRUE, NULL);
}
/**
* g_async_queue_timed_pop:
* @queue: a #GAsyncQueue.
* @end_time: a #GTimeVal, determining the final time.
*
* Pop data from the @queue. If no data is received before @end_time,
* #NULL is returned.
*
* To easily calculate @end_time a combination of g_get_current_time()
* and g_time_val_add() can be used.
*
* Return value: data from the queue or #NULL, when no data is
* received before @end_time.
**/
gpointer
g_async_queue_timed_pop (GAsyncQueue* queue, GTimeVal *end_time)
{
gpointer retval;
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
g_mutex_lock (queue->mutex);
retval = g_async_queue_pop_intern_unlocked (queue, FALSE, end_time);
g_mutex_unlock (queue->mutex);
return retval;
}
/**
* g_async_queue_timed_pop_unlocked:
* @queue: a #GAsyncQueue.
* @end_time: a #GTimeVal, determining the final time.
*
* Pop data from the @queue. If no data is received before @end_time,
* #NULL is returned. This function must be called while holding the
* @queue's lock.
*
* To easily calculate @end_time a combination of g_get_current_time()
* and g_time_val_add() can be used.
*
* Return value: data from the queue or #NULL, when no data is
* received before @end_time.
**/
gpointer
g_async_queue_timed_pop_unlocked (GAsyncQueue* queue, GTimeVal *end_time)
{
g_return_val_if_fail (queue, NULL);
g_return_val_if_fail (queue->ref_count > 0, NULL);
return g_async_queue_pop_intern_unlocked (queue, FALSE, end_time);
}
/**
* g_async_queue_length:
* @queue: a #GAsyncQueue.
*
* Returns the length of the queue, negative values mean waiting
* threads, positive values mean available entries in the
* @queue. Actually this function returns the number of data items in
* the queue minus the number of waiting threads. Thus a return value
* of 0 could mean 'n' entries in the queue and 'n' thread waiting.
* That can happen due to locking of the queue or due to
* scheduling.
*
* Return value: the length of the @queue.
**/
gint
g_async_queue_length (GAsyncQueue* queue)
{
glong retval;
g_return_val_if_fail (queue, 0);
g_return_val_if_fail (queue->ref_count > 0, 0);
g_mutex_lock (queue->mutex);
retval = queue->queue->length - queue->waiting_threads;
g_mutex_unlock (queue->mutex);
return retval;
}
/**
* g_async_queue_length_unlocked:
* @queue: a #GAsyncQueue.
*
* Returns the length of the queue, negative values mean waiting
* threads, positive values mean available entries in the
* @queue. Actually this function returns the number of data items in
* the queue minus the number of waiting threads. Thus a return value
* of 0 could mean 'n' entries in the queue and 'n' thread waiting.
* That can happen due to locking of the queue or due to
* scheduling. This function must be called while holding the @queue's
* lock.
*
* Return value: the length of the @queue.
**/
gint
g_async_queue_length_unlocked (GAsyncQueue* queue)
{
g_return_val_if_fail (queue, 0);
g_return_val_if_fail (queue->ref_count > 0, 0);
return queue->queue->length - queue->waiting_threads;
}