- update to 2.1.2:
* Fixed a regression introduced by 2.1 beta1[13] that caused the remaining
GAS implementations of AArch64 (Arm 64-bit) Neon SIMD functions (which are used
by default with GCC for performance reasons) to be placed in the `.rodata`
section rather than in the `.text` section. This caused the GNU linker to
automatically place the `.rodata` section in an executable segment, which
prevented libjpeg-turbo from working properly with other linkers and also
represented a potential security risk.
* Fixed an issue whereby the `tjTransform()` function incorrectly computed the
MCU block size for 4:4:4 JPEG images with non-unary sampling factors and thus
unduly rejected some cropping regions, even though those regions aligned with
8x8 MCU block boundaries.
* Fixed a regression introduced by 2.1 beta1[13] that caused the build system
to enable the Arm Neon SIMD extensions when targetting Armv6 and other legacy
architectures that do not support Neon instructions.
* libjpeg-turbo now performs run-time detection of AltiVec instructions on
FreeBSD/PowerPC systems if AltiVec instructions are not enabled at compile
time. This allows both AltiVec-equipped and non-AltiVec-equipped CPUs to be
supported using the same build of libjpeg-turbo.
* cjpeg now accepts a `-strict` argument similar to that of djpeg and
jpegtran, which causes the compressor to abort if an LZW-compressed GIF input
image contains incomplete or corrupt image data. (forwarded request 933591 from dirkmueller)
OBS-URL: https://build.opensuse.org/request/show/933730
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=60
- update to 2.1.2:
* Fixed a regression introduced by 2.1 beta1[13] that caused the remaining
GAS implementations of AArch64 (Arm 64-bit) Neon SIMD functions (which are used
by default with GCC for performance reasons) to be placed in the `.rodata`
section rather than in the `.text` section. This caused the GNU linker to
automatically place the `.rodata` section in an executable segment, which
prevented libjpeg-turbo from working properly with other linkers and also
represented a potential security risk.
* Fixed an issue whereby the `tjTransform()` function incorrectly computed the
MCU block size for 4:4:4 JPEG images with non-unary sampling factors and thus
unduly rejected some cropping regions, even though those regions aligned with
8x8 MCU block boundaries.
* Fixed a regression introduced by 2.1 beta1[13] that caused the build system
to enable the Arm Neon SIMD extensions when targetting Armv6 and other legacy
architectures that do not support Neon instructions.
* libjpeg-turbo now performs run-time detection of AltiVec instructions on
FreeBSD/PowerPC systems if AltiVec instructions are not enabled at compile
time. This allows both AltiVec-equipped and non-AltiVec-equipped CPUs to be
supported using the same build of libjpeg-turbo.
* cjpeg now accepts a `-strict` argument similar to that of djpeg and
jpegtran, which causes the compressor to abort if an LZW-compressed GIF input
image contains incomplete or corrupt image data.
OBS-URL: https://build.opensuse.org/request/show/933591
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=124
1. Fixed a regression introduced in 2.1.0 that caused build failures
with non-GCC-compatible compilers for Un*x/Arm platforms.
2. Fixed a regression introduced by 2.1 beta1[13] that prevented the
Arm 32-bit (AArch32) Neon SIMD extensions from building unless
the C compiler flags included -mfloat-abi=softfp or -mfloat-abi=hard.
3. Fixed an issue in the AArch32 Neon SIMD Huffman encoder whereby
reliance on undefined C compiler behavior led to crashes
("SIGBUS: illegal alignment") on Android systems when running
AArch32/Thumb builds of libjpeg-turbo built with recent versions
of Clang.
4. Added a command-line argument (-copy icc) to jpegtran that causes
it to copy only the ICC profile markers from the source file and
discard any other metadata.
5. libjpeg-turbo should now build and run on CHERI-enabled
architectures, which use capability pointers that are larger than
the size of size_t.
6. Fixed a regression introduced by 2.1 beta1[5] that caused a segfault
in the 64-bit SSE2 Huffman encoder when attempting to losslessly
transform a specially-crafted malformed JPEG image.
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=122
- version update to 2.0.6
1. Fixed "using JNI after critical get" errors that occurred on Android
platforms when using any of the YUV encoding/compression/decompression/decoding
methods in the TurboJPEG Java API.
2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`:
- Fixed segfaults or "Corrupt JPEG data: premature end of data segment"
errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or
4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that
is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 2.0.0[6] was a
similar fix, but it did not cover all cases.
- `jpeg_skip_scanlines()` now throws an error if two-pass color
quantization is enabled. Two-pass color quantization never worked properly
with `jpeg_skip_scanlines()`, and the issues could not readily be fixed.
- Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when
skipping past the end of an image.
3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW
toolchains targetting Arm64 (AArch64) Windows binaries.
4. Fixed unexpected visual artifacts that occurred when using
`jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC
scan of a progressive JPEG image.
5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component
JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8
API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.)
- modified sources
% libjpeg-turbo.keyring
OBS-URL: https://build.opensuse.org/request/show/859049
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=54
1. Fixed "using JNI after critical get" errors that occurred on Android
platforms when using any of the YUV encoding/compression/decompression/decoding
methods in the TurboJPEG Java API.
2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`:
- Fixed segfaults or "Corrupt JPEG data: premature end of data segment"
errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or
4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that
is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 2.0.0[6] was a
similar fix, but it did not cover all cases.
- `jpeg_skip_scanlines()` now throws an error if two-pass color
quantization is enabled. Two-pass color quantization never worked properly
with `jpeg_skip_scanlines()`, and the issues could not readily be fixed.
- Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when
skipping past the end of an image.
3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW
toolchains targetting Arm64 (AArch64) Windows binaries.
4. Fixed unexpected visual artifacts that occurred when using
`jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC
scan of a progressive JPEG image.
5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component
JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8
API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.)
- modified sources
% libjpeg-turbo.keyring
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=113
- Update to version 2.0.5
* Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
in the libjpeg-turbo regression tests. Specifically, the
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions
in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
fixed, and other functions that are incompatible with big endian MIPS CPUs
are disabled when building libjpeg-turbo for such CPUs.
* Fixed an oversight in the TJCompressor.compress(int) method in the
TurboJPEG Java API that caused an error ("java.lang.IllegalStateException:
No source image is associated with this instance") when attempting to use
that method to compress a YUV image.
* Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the
values in a binary PPM/PGM input file exceeded the maximum value defined in
the file's header and that maximum value was less than 255. libjpeg-turbo
1.5.0 already included a similar fix for binary PPM/PGM files with maximum
values greater than 255.
* The TurboJPEG API library's global error handler, which is used in
functions such as tjBufSize() and tjLoadImage() that do not require a
TurboJPEG instance handle, is now thread-safe on platforms that support
thread-local storage.
- Fix source verification
- Drop patches fixed upstream:
* ctest-depends.patch
* libjpeg-turbo-CVE-2020-13790.patch
- Run spec-cleaner
* Remove package groups
* Use make macros
- Update to version 2.0.5
* Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
in the libjpeg-turbo regression tests. Specifically, the
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions
in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
fixed, and other functions that are incompatible with big endian MIPS CPUs
are disabled when building libjpeg-turbo for such CPUs.
* Fixed an oversight in the TJCompressor.compress(int) method in the
TurboJPEG Java API that caused an error ("java.lang.IllegalStateException:
No source image is associated with this instance") when attempting to use
that method to compress a YUV image.
* Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the
values in a binary PPM/PGM input file exceeded the maximum value defined in
the file's header and that maximum value was less than 255. libjpeg-turbo
1.5.0 already included a similar fix for binary PPM/PGM files with maximum
values greater than 255.
* The TurboJPEG API library's global error handler, which is used in
functions such as tjBufSize() and tjLoadImage() that do not require a
TurboJPEG instance handle, is now thread-safe on platforms that support
thread-local storage.
- Drop patches fixed upstream:
* ctest-depends.patch
* libjpeg-turbo-CVE-2020-13790.patch
- Run spec-cleaner
* Remove package groups
* Use make macros (forwarded request 826111 from elimat)
OBS-URL: https://build.opensuse.org/request/show/826188
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=53
- Update to version 2.0.5
* Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
in the libjpeg-turbo regression tests. Specifically, the
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions
in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
fixed, and other functions that are incompatible with big endian MIPS CPUs
are disabled when building libjpeg-turbo for such CPUs.
* Fixed an oversight in the TJCompressor.compress(int) method in the
TurboJPEG Java API that caused an error ("java.lang.IllegalStateException:
No source image is associated with this instance") when attempting to use
that method to compress a YUV image.
* Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the
values in a binary PPM/PGM input file exceeded the maximum value defined in
the file's header and that maximum value was less than 255. libjpeg-turbo
1.5.0 already included a similar fix for binary PPM/PGM files with maximum
values greater than 255.
* The TurboJPEG API library's global error handler, which is used in
functions such as tjBufSize() and tjLoadImage() that do not require a
TurboJPEG instance handle, is now thread-safe on platforms that support
thread-local storage.
- Fix source verification
- Drop patches fixed upstream:
* ctest-depends.patch
* libjpeg-turbo-CVE-2020-13790.patch
- Run spec-cleaner
* Remove package groups
* Use make macros
- Update to version 2.0.5
* Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
in the libjpeg-turbo regression tests. Specifically, the
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions
in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
fixed, and other functions that are incompatible with big endian MIPS CPUs
are disabled when building libjpeg-turbo for such CPUs.
* Fixed an oversight in the TJCompressor.compress(int) method in the
TurboJPEG Java API that caused an error ("java.lang.IllegalStateException:
No source image is associated with this instance") when attempting to use
that method to compress a YUV image.
* Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the
values in a binary PPM/PGM input file exceeded the maximum value defined in
the file's header and that maximum value was less than 255. libjpeg-turbo
1.5.0 already included a similar fix for binary PPM/PGM files with maximum
values greater than 255.
* The TurboJPEG API library's global error handler, which is used in
functions such as tjBufSize() and tjLoadImage() that do not require a
TurboJPEG instance handle, is now thread-safe on platforms that support
thread-local storage.
- Drop patches fixed upstream:
* ctest-depends.patch
* libjpeg-turbo-CVE-2020-13790.patch
- Run spec-cleaner
* Remove package groups
* Use make macros
OBS-URL: https://build.opensuse.org/request/show/826111
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=111
- Upate to version 2.0.4:
- bug 388 was fixed upstream
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388
- removed patches, as it is included in this release.
* Fixed a regression in the Windows packaging system
(introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo
SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed
on the same system, only one of them could be uninstalled.
* Fixed a signed integer overflow and subsequent segfault that occurred when
attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench.
* Fixed out-of-bounds write in tjDecompressToYUV2() and tjDecompressToYUVPlanes()
(sometimes manifesting as a double free) that occurred when attempting to decompress
grayscale JPEG images that were compressed with a sampling factor other than 1
(for instance, with cjpeg -grayscale -sample 2x2).
* Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly
identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images.
This was known to cause a buffer overflow when attempting to decompress some such images using
tjDecompressToYUV2() or tjDecompressToYUVPlanes().
* Fixed an issue, detected by ASan, whereby attempting to losslessly transform a specially-crafted
malformed JPEG image containing an extremely-high-frequency coefficient block
(junk image data that could never be generated by a legitimate JPEG compressor) could cause the
Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].)
Given that the buffer overrun was fully contained within the stack and did not cause a segfault
or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor)
is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk.
The ARM 64-bit (ARMv8) NEON SIMD assembly code now stores constants in a separate read-only data
section rather than in the text section, to support execute-only memory layouts.
- libjpeg-turbo-issue-388.patch upstreamed
- Added If statments for Fedora not having sertain openSUSE macros
OBS-URL: https://build.opensuse.org/request/show/789669
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=51
- Upate to version 2.0.4:
- bug 388 was fixed upstream
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388
- removed patches, as it is included in this release.
* Fixed a regression in the Windows packaging system
(introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo
SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed
on the same system, only one of them could be uninstalled.
* Fixed a signed integer overflow and subsequent segfault that occurred when
attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench.
* Fixed out-of-bounds write in tjDecompressToYUV2() and tjDecompressToYUVPlanes()
(sometimes manifesting as a double free) that occurred when attempting to decompress
grayscale JPEG images that were compressed with a sampling factor other than 1
(for instance, with cjpeg -grayscale -sample 2x2).
* Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly
identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images.
This was known to cause a buffer overflow when attempting to decompress some such images using
tjDecompressToYUV2() or tjDecompressToYUVPlanes().
* Fixed an issue, detected by ASan, whereby attempting to losslessly transform a specially-crafted
malformed JPEG image containing an extremely-high-frequency coefficient block
(junk image data that could never be generated by a legitimate JPEG compressor) could cause the
Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].)
Given that the buffer overrun was fully contained within the stack and did not cause a segfault
or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor)
is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk.
The ARM 64-bit (ARMv8) NEON SIMD assembly code now stores constants in a separate read-only data
section rather than in the text section, to support execute-only memory layouts.
- Upate to version 2.0.4:
* Fixed a regression in the Windows packaging system
(introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo
SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed
on the same system, only one of them could be uninstalled.
* Fixed a signed integer overflow and subsequent segfault that occurred when
attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench.
* Fixed out-of-bounds write in tjDecompressToYUV2() and tjDecompressToYUVPlanes()
(sometimes manifesting as a double free) that occurred when attempting to decompress
grayscale JPEG images that were compressed with a sampling factor other than 1
(for instance, with cjpeg -grayscale -sample 2x2).
* Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly
identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images.
This was known to cause a buffer overflow when attempting to decompress some such images using
tjDecompressToYUV2() or tjDecompressToYUVPlanes().
* Fixed an issue, detected by ASan, whereby attempting to losslessly transform a specially-crafted
malformed JPEG image containing an extremely-high-frequency coefficient block
(junk image data that could never be generated by a legitimate JPEG compressor) could cause the
Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].)
Given that the buffer overrun was fully contained within the stack and did not cause a segfault
or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor)
is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk.
The ARM 64-bit (ARMv8) NEON SIMD assembly code now stores constants in a separate read-only data
section rather than in the text section, to support execute-only memory layouts.
OBS-URL: https://build.opensuse.org/request/show/789475
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=104
- updated to version 2.0.2:
1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search
path (rpath) from being embedded in the libjpeg-turbo shared libraries and
executables for macOS and iOS. This caused a fatal error of the form
"dyld: Library not loaded" when attempting to use one of the executables,
unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the
libjpeg-turbo shared libraries.
2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that
occurred when attempting to load a BMP file with more than 1 billion pixels
using the `tjLoadImage()` function.
3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to
decompress a specially-crafted malformed JPEG image to a 256-color BMP using
djpeg.
4. Fixed a floating point exception that occurred when attempting to
decompress a specially-crafted malformed JPEG image with a specified image
width or height of 0 using the C version of TJBench.
5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1,
or 1x3 luminance and chrominance sampling factors. This is a non-standard way
of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and
chrominance sampling factors), but the JPEG format and the libjpeg API both
allow it.
6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate
incorrect PPM images when used with the `-colors` option.
7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which
`ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE.
8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that
occurred when compressing RGB images whose image rows were not 64-bit-aligned.
- modified patches
% ctest-depends.patch (refreshed)
- deleted patches
OBS-URL: https://build.opensuse.org/request/show/684675
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=47
1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search
path (rpath) from being embedded in the libjpeg-turbo shared libraries and
executables for macOS and iOS. This caused a fatal error of the form
"dyld: Library not loaded" when attempting to use one of the executables,
unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the
libjpeg-turbo shared libraries.
2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that
occurred when attempting to load a BMP file with more than 1 billion pixels
using the `tjLoadImage()` function.
3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to
decompress a specially-crafted malformed JPEG image to a 256-color BMP using
djpeg.
4. Fixed a floating point exception that occurred when attempting to
decompress a specially-crafted malformed JPEG image with a specified image
width or height of 0 using the C version of TJBench.
5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1,
or 1x3 luminance and chrominance sampling factors. This is a non-standard way
of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and
chrominance sampling factors), but the JPEG format and the libjpeg API both
allow it.
6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate
incorrect PPM images when used with the `-colors` option.
7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which
`ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE.
8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that
occurred when compressing RGB images whose image rows were not 64-bit-aligned.
- modified patches
% ctest-depends.patch (refreshed)
- deleted patches
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=94
- update to version 2.0.1:
* jsimd_quantize_float_dspr2() and jsimd_convsamp_float_dspr2()
functions in the MIPS DSPr2 SIMD extensions are now disabled
at compile time if the soft float ABI is enabled
* Fixed a regression in the SIMD feature detection code,
introduced by the AVX2 SIMD extensions
* Fixed out-of-bounds read in cjpeg that occurred when attempting
to compress a specially-crafted malformed color-index
(8-bit-per-sample) Targa file
- update to version 2.0.1:
* jsimd_quantize_float_dspr2() and jsimd_convsamp_float_dspr2()
functions in the MIPS DSPr2 SIMD extensions are now disabled
at compile time if the soft float ABI is enabled
* Fixed a regression in the SIMD feature detection code,
introduced by the AVX2 SIMD extensions
* Fixed out-of-bounds read in cjpeg that occurred when attempting
to compress a specially-crafted malformed color-index
(8-bit-per-sample) Targa file
OBS-URL: https://build.opensuse.org/request/show/648719
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=43
* jsimd_quantize_float_dspr2() and jsimd_convsamp_float_dspr2()
functions in the MIPS DSPr2 SIMD extensions are now disabled
at compile time if the soft float ABI is enabled
* Fixed a regression in the SIMD feature detection code,
introduced by the AVX2 SIMD extensions
* Fixed out-of-bounds read in cjpeg that occurred when attempting
to compress a specially-crafted malformed color-index
(8-bit-per-sample) Targa file
- update to version 2.0.1:
* jsimd_quantize_float_dspr2() and jsimd_convsamp_float_dspr2()
functions in the MIPS DSPr2 SIMD extensions are now disabled
at compile time if the soft float ABI is enabled
* Fixed a regression in the SIMD feature detection code,
introduced by the AVX2 SIMD extensions
* Fixed out-of-bounds read in cjpeg that occurred when attempting
to compress a specially-crafted malformed color-index
(8-bit-per-sample) Targa file
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=85
- Version update to 2.0.0:
* Cmake as a buildsystem
* avx support
* Better error handling
* More use of SSE2
- Drop patch libjpeg-1.4.0-ocloexec.patch; conflicts, would be better
handled by upstream anyway
- Drop patches merged upstream:
* libjpeg-turbo-CVE-2018-11813.patch
* libjpeg-turbo-CVE-2018-1152.patch
- Version update to 2.0.0:
* Cmake as a buildsystem
* avx support
* Better error handling
* More use of SSE2
- Drop patch libjpeg-1.4.0-ocloexec.patch; conflicts, would be better
handled by upstream anyway
- Drop patches merged upstream:
* libjpeg-turbo-CVE-2018-11813.patch
* libjpeg-turbo-CVE-2018-1152.patch (forwarded request 626889 from scarabeus_iv)
OBS-URL: https://build.opensuse.org/request/show/626896
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/libjpeg-turbo?expand=0&rev=40
- Version update to 2.0.0:
* Cmake as a buildsystem
* avx support
* Better error handling
* More use of SSE2
- Drop patch libjpeg-1.4.0-ocloexec.patch; conflicts, would be better
handled by upstream anyway
- Drop patches merged upstream:
* libjpeg-turbo-CVE-2018-11813.patch
* libjpeg-turbo-CVE-2018-1152.patch
- Version update to 2.0.0:
* Cmake as a buildsystem
* avx support
* Better error handling
* More use of SSE2
- Drop patch libjpeg-1.4.0-ocloexec.patch; conflicts, would be better
handled by upstream anyway
- Drop patches merged upstream:
* libjpeg-turbo-CVE-2018-11813.patch
* libjpeg-turbo-CVE-2018-1152.patch
OBS-URL: https://build.opensuse.org/request/show/626889
OBS-URL: https://build.opensuse.org/package/show/graphics/libjpeg-turbo?expand=0&rev=79