openvino/openvino.spec

527 lines
15 KiB
RPMSpec
Raw Normal View History

#
# spec file for package openvino
#
# Copyright (c) 2024 SUSE LLC
# Copyright (c) 2024 Alessandro de Oliveira Faria (A.K.A. CABELO) <cabelo@opensuse.org> or <alessandro.faria@owasp.org>
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
# Please submit bugfixes or comments via https://bugs.opensuse.org/
#
# Note: Will not build on Leap:15.X on account of too old TBB
# Compilation takes ~1 hr on OBS for a single python, don't try all supported flavours
%define pythons python3
%define __builder ninja
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
%define so_ver 2420
%define shlib lib%{name}%{so_ver}
%define shlib_c lib%{name}_c%{so_ver}
%define prj_name OpenVINO
Name: openvino
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
Version: 2024.2.0
Release: 0
Summary: A toolkit for optimizing and deploying AI inference
# Let's be safe and put all third party licenses here, no matter that we use specific thirdparty libs or not
License: Apache-2.0 AND BSD-2-Clause AND BSD-3-Clause AND HPND AND JSON AND MIT AND OFL-1.1 AND Zlib
URL: https://github.com/openvinotoolkit/openvino
Source0: %{name}-%{version}.tar.zst
Source1: %{name}-rpmlintrc
# PATCH-FEATURE-OPENSUSE openvino-onnx-ml-defines.patch badshah400@gmail.com -- Define ONNX_ML at compile time when using system onnx to allow using 'onnx-ml.pb.h' instead of 'onnx.pb.h', the latter not being shipped with openSUSE's onnx-devel package
Patch0: openvino-onnx-ml-defines.patch
# PATCH-FEATURE-OPENSUSE openvino-fix-install-paths.patch badshah400@gmail.com -- Fix installation paths hardcoded into upstream defined cmake macros
Patch2: openvino-fix-install-paths.patch
# PATCH-FIX-UPSTREAM openvino-ComputeLibrary-include-string.patch badshah400@gmail.com -- Include header for std::string
Patch3: openvino-ComputeLibrary-include-string.patch
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
# PATCH-FIX-UPSTREAM openvino-fix-build-sample-path.patch cabelo@opensuse.org -- Fix sample source path in build script
Patch4: openvino-fix-build-sample-path.patch
BuildRequires: ade-devel
BuildRequires: cmake
BuildRequires: fdupes
BuildRequires: gcc-c++
BuildRequires: ninja
BuildRequires: opencl-cpp-headers
# FIXME: /usr/include/onnx/onnx-ml.pb.h:17:2: error: This file was generated by
# an older version of protoc which is incompatible with your Protocol Buffer
# headers. Please regenerate this file with a newer version of protoc.
#BuildRequires: cmake(ONNX)
BuildRequires: pkgconfig
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
BuildRequires: %{python_module devel}
BuildRequires: %{python_module pip}
BuildRequires: %{python_module pybind11-devel}
BuildRequires: %{python_module setuptools}
BuildRequires: %{python_module wheel}
BuildRequires: python-rpm-macros
BuildRequires: zstd
BuildRequires: pkgconfig(OpenCL-Headers)
BuildRequires: pkgconfig(flatbuffers)
BuildRequires: pkgconfig(libva)
BuildRequires: pkgconfig(nlohmann_json)
BuildRequires: pkgconfig(ocl-icd)
BuildRequires: pkgconfig(protobuf)
BuildRequires: pkgconfig(pugixml)
BuildRequires: pkgconfig(snappy)
BuildRequires: pkgconfig(tbb)
BuildRequires: pkgconfig(zlib)
%ifarch %{arm64}
BuildRequires: scons
%endif
# No 32-bit support
ExcludeArch: %{ix86} %{arm32} ppc
%define python_subpackage_only 1
%python_subpackages
%description
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
## Main shared libs and devel pkg ##
#
%package -n %{shlib}
Summary: Shared library for OpenVINO toolkit
%description -n %{shlib}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the shared library for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{shlib_c}
Summary: Shared C library for OpenVINO toolkit
%description -n %{shlib_c}
This package provides the C library for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-devel
Summary: Headers and sources for OpenVINO toolkit
Requires: %{shlib_c} = %{version}
Requires: %{shlib} = %{version}
Requires: lib%{name}_ir_frontend%{so_ver} = %{version}
Requires: lib%{name}_onnx_frontend%{so_ver} = %{version}
Requires: lib%{name}_paddle_frontend%{so_ver} = %{version}
Requires: lib%{name}_pytorch_frontend%{so_ver} = %{version}
Requires: lib%{name}_tensorflow_frontend%{so_ver} = %{version}
Requires: lib%{name}_tensorflow_lite_frontend%{so_ver} = %{version}
Requires: pkgconfig(OpenCL-Headers)
Requires: pkgconfig(flatbuffers)
Requires: pkgconfig(libva)
Requires: pkgconfig(nlohmann_json)
Requires: pkgconfig(ocl-icd)
Requires: pkgconfig(protobuf)
Requires: pkgconfig(pugixml)
Requires: pkgconfig(snappy)
Requires: pkgconfig(tbb)
Recommends: %{name}-auto-batch-plugin = %{version}
Recommends: %{name}-auto-plugin = %{version}
Recommends: %{name}-hetero-plugin = %{version}
Recommends: %{name}-intel-cpu-plugin = %{version}
%ifarch riscv64
Recommends: %{name}-riscv-cpu-plugin = %{version}
%endif
%description -n %{name}-devel
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the headers and sources for developing applications with
OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
## Plugins ##
#
%package -n %{name}-arm-cpu-plugin
Summary: Intel CPU plugin for OpenVINO toolkit
%description -n %{name}-arm-cpu-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the ARM CPU plugin for OpenVINO on %{arm64} archs.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-riscv-cpu-plugin
Summary: RISC-V CPU plugin for OpenVINO toolkit
%description -n %{name}-riscv-cpu-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the RISC-V CPU plugin for OpenVINO on riscv64 archs.
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-auto-plugin
Summary: Auto / Multi software plugin for OpenVINO toolkit
%description -n %{name}-auto-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the Auto / Multi software plugin for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-auto-batch-plugin
Summary: Automatic batch software plugin for OpenVINO toolkit
%description -n %{name}-auto-batch-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the automatic batch software plugin for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-hetero-plugin
Summary: Hetero frontend for Intel OpenVINO toolkit
%description -n %{name}-hetero-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the hetero frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n %{name}-intel-cpu-plugin
Summary: Intel CPU plugin for OpenVINO toolkit
%description -n %{name}-intel-cpu-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the intel CPU plugin for OpenVINO for %{x86_64} archs.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
%package -n %{name}-intel-npu-plugin
Summary: Intel NPU plugin for OpenVINO toolkit
%description -n %{name}-intel-npu-plugin
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the intel NPU plugin for OpenVINO for %{x86_64} archs.
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
## Frontend shared libs ##
#
%package -n lib%{name}_ir_frontend%{so_ver}
Summary: Paddle frontend for Intel OpenVINO toolkit
%description -n lib%{name}_ir_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the ir frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n lib%{name}_onnx_frontend%{so_ver}
Summary: Onnx frontend for OpenVINO toolkit
%description -n lib%{name}_onnx_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the onnx frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n lib%{name}_paddle_frontend%{so_ver}
Summary: Paddle frontend for Intel OpenVINO toolkit
%description -n lib%{name}_paddle_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the paddle frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n lib%{name}_pytorch_frontend%{so_ver}
Summary: PyTorch frontend for OpenVINO toolkit
%description -n lib%{name}_pytorch_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the pytorch frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n lib%{name}_tensorflow_frontend%{so_ver}
Summary: TensorFlow frontend for OpenVINO toolkit
%description -n lib%{name}_tensorflow_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the tensorflow frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%package -n lib%{name}_tensorflow_lite_frontend%{so_ver}
Summary: TensorFlow Lite frontend for OpenVINO toolkit
%description -n lib%{name}_tensorflow_lite_frontend%{so_ver}
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides the tensorflow-lite frontend for OpenVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
## Python module ##
#
%package -n python-openvino
Summary: Python module for openVINO toolkit
Requires: python-numpy < 2
Requires: python-openvino-telemetry
%description -n python-openvino
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides a Python module for interfacing with openVINO toolkit.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
## Samples/examples ##
#
%package -n %{name}-sample
Summary: Samples for use with OpenVINO toolkit
BuildArch: noarch
%description -n %{name}-sample
OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
This package provides some samples for use with openVINO.
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
- Update to 2024.2.0 - More Gen AI coverage and framework integrations to minimize code changes * Llama 3 optimizations for CPUs, built-in GPUs, and discrete GPUs for improved performance and efficient memory usage. * Support for Phi-3-mini, a family of AI models that leverages the power of small language models for faster, more accurate and cost-effective text processing. * Python Custom Operation is now enabled in OpenVINO making it easier for Python developers to code their custom operations instead of using C++ custom operations (also supported). Python Custom Operation empowers users to implement their own specialized operations into any model. * Notebooks expansion to ensure better coverage for new models. Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot notebook with Phi-3, and QWEN2. - Broader Large Language Model (LLM) support and more model compression techniques. * GPTQ method for 4-bit weight compression added to NNCF for more efficient inference and improved performance of compressed LLMs. * Significant LLM performance improvements and reduced latency for both built-in GPUs and discrete GPUs. * Significant improvement in 2nd token latency and memory footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™ processors) and AVX512 (3rd Gen Intel® Xeon® Scalable Processors) based CPU platforms, particularly for small batch sizes. - More portability and performance to run AI at the edge, in the cloud, or locally. * Model Serving Enhancements: * Preview: OpenVINO Model Server (OVMS) now supports OpenAI-compatible API along with Continuous Batching and PagedAttention, enabling significantly higher throughput for parallel inferencing, especially on Intel® Xeon® processors, when serving LLMs to many concurrent users. * OpenVINO backend for Triton Server now supports built-in GPUs and discrete GPUs, in addition to dynamic shapes support. * Integration of TorchServe through torch.compile OpenVINO backend for easy model deployment, provisioning to multiple instances, model versioning, and maintenance. * Preview: addition of the Generate API, a simplified API for text generation using large language models with only a few lines of code. The API is available through the newly launched OpenVINO GenAI package. * Support for Intel Atom® Processor X Series. For more details, see System Requirements. * Preview: Support for Intel® Xeon® 6 processor. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: + “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. + A number of notebooks have been deprecated. For an up-to-date listing of available notebooks, refer to the OpenVINO™ Notebook index (openvinotoolkit.github.io). OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
2024-06-20 13:47:15 +00:00
#
%prep
%autosetup -p1
%build
# Otherwise intel_cpu plugin declares an executable stack
%ifarch %{x86_64}
%define build_ldflags -Wl,-z,noexecstack
%endif
%cmake \
-DCMAKE_CXX_STANDARD=17 \
-DBUILD_SHARED_LIBS=ON \
-DENABLE_OV_ONNX_FRONTEND=ON \
-DENABLE_OV_PADDLE_FRONTEND=ON \
-DENABLE_OV_PYTORCH_FRONTEND=ON \
-DENABLE_OV_IR_FRONTEND=ON \
-DENABLE_OV_TF_FRONTEND=ON \
-DENABLE_OV_TF_LITE_FRONTEND=ON \
-DENABLE_INTEL_GPU=OFF \
-DENABLE_JS=OFF \
-DENABLE_PYTHON=ON \
-DENABLE_WHEEL=OFF \
-DENABLE_SYSTEM_OPENCL=ON \
-DENABLE_SYSTEM_PROTOBUF=ON \
-DENABLE_SYSTEM_PUGIXML=ON \
-DENABLE_SYSTEM_SNAPPY=ON \
-DENABLE_SYSTEM_TBB=ON \
-DONNX_USE_PROTOBUF_SHARED_LIBS=ON \
-DProtobuf_USE_STATIC_LIBS=OFF \
%{nil}
%cmake_build
# Manually generate dist-info dir
export WHEEL_VERSION=%{version} \
BUILD_TYPE=RelWithDebInfo
%ifarch %{power64}
# Manual hackery for power64 because it not "officially" supported
sed -i "s/{ARCH}/%{_arch}/" ../src/bindings/python/wheel/setup.py
%endif
%python_exec ../src/bindings/python/wheel/setup.py dist_info -o ../
%install
%cmake_install
rm %{buildroot}%{_datadir}/%{prj_name}/samples/cpp/thirdparty/nlohmann_json/.cirrus.yml
# Hash-bangs in non-exec python sample scripts
sed -Ei "1{\@/usr/bin/env@d}" \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/benchmark/bert_benchmark/bert_benchmark.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/benchmark/sync_benchmark/sync_benchmark.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/benchmark/throughput_benchmark/throughput_benchmark.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/classification_sample_async/classification_sample_async.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/hello_classification/hello_classification.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/hello_query_device/hello_query_device.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/hello_reshape_ssd/hello_reshape_ssd.py \
%{buildroot}%{_datadir}/%{prj_name}/samples/python/model_creation_sample/model_creation_sample.py
# Unnecessary if we get our package dependencies and lib paths right!
rm -fr %{buildroot}%{_prefix}/install_dependencies \
%{buildroot}%{_prefix}/setupvars.sh
%{python_expand rm %{buildroot}%{$python_sitearch}/requirements.txt
chmod -x %{buildroot}%{$python_sitearch}/%{name}/tools/ovc/ovc.py
cp -r %{name}-%{version}.dist-info %{buildroot}%{$python_sitearch}/
%fdupes %{buildroot}%{$python_sitearch}/%{name}/
}
%fdupes %{buildroot}%{_datadir}/
# We do not use bundled thirdparty libs
rm -fr %{buildroot}%{_datadir}/licenses/*
%ldconfig_scriptlets -n %{shlib}
%ldconfig_scriptlets -n %{shlib_c}
%ldconfig_scriptlets -n lib%{name}_ir_frontend%{so_ver}
%ldconfig_scriptlets -n lib%{name}_onnx_frontend%{so_ver}
%ldconfig_scriptlets -n lib%{name}_paddle_frontend%{so_ver}
%ldconfig_scriptlets -n lib%{name}_pytorch_frontend%{so_ver}
%ldconfig_scriptlets -n lib%{name}_tensorflow_lite_frontend%{so_ver}
%ldconfig_scriptlets -n lib%{name}_tensorflow_frontend%{so_ver}
%files -n %{shlib}
%license LICENSE
%{_libdir}/libopenvino.so.*
%files -n %{shlib_c}
%license LICENSE
%{_libdir}/libopenvino_c.so.*
%files -n %{name}-auto-batch-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_auto_batch_plugin.so
%files -n %{name}-auto-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_auto_plugin.so
%ifarch %{x86_64}
%files -n %{name}-intel-cpu-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_intel_cpu_plugin.so
Accepting request 1173003 from home:cabelo:branches:science:machinelearning - Fix sample source path in build script. - Update to 2024.1.0 - More Generative AI coverage and framework integrations to minimize code changes. * Mixtral and URLNet models optimized for performance improvements on Intel® Xeon® processors. * Stable Diffusion 1.5, ChatGLM3-6B, and Qwen-7B models optimized for improved inference speed on Intel® Core™ Ultra processors with integrated GPU. * Support for Falcon-7B-Instruct, a GenAI Large Language Model (LLM) ready-to-use chat/instruct model with superior performance metrics. * New Jupyter Notebooks added: YOLO V9, YOLO V8 Oriented Bounding Boxes Detection (OOB), Stable Diffusion in Keras, MobileCLIP, RMBG-v1.4 Background Removal, Magika, TripoSR, AnimateAnyone, LLaVA-Next, and RAG system with OpenVINO and LangChain. - Broader Large Language Model (LLM) support and more model compression techniques. * LLM compilation time reduced through additional optimizations with compressed embedding. Improved 1st token performance of LLMs on 4th and 5th generations of Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel® AMX). * Better LLM compression and improved performance with oneDNN, INT4, and INT8 support for Intel® Arc™ GPUs. * Significant memory reduction for select smaller GenAI models on Intel® Core™ Ultra processors with integrated GPU. - More portability and performance to run AI at the edge, in the cloud, or locally. * The preview NPU plugin for Intel® Core™ Ultra processors is now available in the OpenVINO open-source GitHub repository, in addition to the main OpenVINO package on PyPI. * The JavaScript API is now more easily accessible through the npm repository, enabling JavaScript developers’ seamless access to the OpenVINO API. * FP16 inference on ARM processors now enabled for the Convolutional Neural Network (CNN) by default. - Support Change and Deprecation Notices * Using deprecated features and components is not advised. They are available to enable a smooth transition to new solutions and will be discontinued in the future. To keep using Discontinued features, you will have to revert to the last LTS OpenVINO version supporting them. * For more details, refer to the OpenVINO Legacy Features and Components page. * Discontinued in 2024.0: + Runtime components: - Intel® Gaussian & Neural Accelerator (Intel® GNA). Consider using the Neural Processing Unit (NPU) for low-powered systems like Intel® Core™ Ultra or 14th generation and beyond. - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API transition guide for reference). - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) - 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API + Tools: - Deployment Manager. See installation and deployment guides for current distribution options. - Accuracy Checker. - Post-Training Optimization Tool (POT). Neural Network Compression Framework (NNCF) should be used instead. - A Git patch for NNCF integration with  huggingface/transformers. The recommended approach  is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face. - Support for Apache MXNet, Caffe, and Kaldi model formats. Conversion to ONNX may be used as a solution. * Deprecated and to be removed in the future: + The OpenVINO™ Development Tools package (pip install openvino-dev) will be removed from installation options and distribution channels beginning with OpenVINO 2025.0. + Model Optimizer will be discontinued with OpenVINO 2025.0. Consider using the new conversion methods instead. For more details, see the model conversion transition guide. + OpenVINO property Affinity API will be discontinued with OpenVINO 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning). + OpenVINO Model Server components: - “auto shape” and “auto batch size” (reshaping a model in runtime) will be removed in the future. OpenVINO’s dynamic shape models are recommended instead. OBS-URL: https://build.opensuse.org/request/show/1173003 OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=5
2024-05-13 17:52:35 +00:00
%files -n %{name}-intel-npu-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_intel_npu_plugin.so
%endif
%ifarch %{arm64}
%files -n %{name}-arm-cpu-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_arm_cpu_plugin.so
%endif
%ifarch riscv64
%files -n %{name}-riscv-cpu-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_riscv_cpu_plugin.so
%endif
%files -n %{name}-hetero-plugin
%dir %{_libdir}/%{prj_name}
%{_libdir}/%{prj_name}/libopenvino_hetero_plugin.so
%files -n lib%{name}_onnx_frontend%{so_ver}
%{_libdir}/libopenvino_onnx_frontend.so.*
%files -n lib%{name}_ir_frontend%{so_ver}
%{_libdir}/libopenvino_ir_frontend.so.*
%files -n lib%{name}_paddle_frontend%{so_ver}
%{_libdir}/libopenvino_paddle_frontend.so.*
%files -n lib%{name}_pytorch_frontend%{so_ver}
%{_libdir}/libopenvino_pytorch_frontend.so.*
%files -n lib%{name}_tensorflow_frontend%{so_ver}
%{_libdir}/libopenvino_tensorflow_frontend.so.*
%files -n lib%{name}_tensorflow_lite_frontend%{so_ver}
%{_libdir}/libopenvino_tensorflow_lite_frontend.so.*
%files -n %{name}-sample
%license LICENSE
%{_datadir}/%{prj_name}/
%files -n %{name}-devel
%license LICENSE
%{_includedir}/%{name}/
%{_libdir}/cmake/%{prj_name}/
%{_libdir}/*.so
%{_libdir}/pkgconfig/openvino.pc
%files %{python_files openvino}
%license LICENSE
%{python_sitearch}/openvino/
%{python_sitearch}/openvino*-info/
%changelog