15
0

Accepting request 615078 from home:jengelh:branches:devel:languages:python

- Remove filler wording from description.

OBS-URL: https://build.opensuse.org/request/show/615078
OBS-URL: https://build.opensuse.org/package/show/devel:languages:python/python-colorspacious?expand=0&rev=4
This commit is contained in:
2018-06-08 08:07:27 +00:00
committed by Git OBS Bridge
parent d6657af97c
commit e7a420b8c9
2 changed files with 13 additions and 8 deletions

View File

@@ -1,3 +1,8 @@
-------------------------------------------------------------------
Thu Jun 7 20:43:07 UTC 2018 - jengelh@inai.de
- Remove filler wording from description.
-------------------------------------------------------------------
Thu May 3 14:07:08 UTC 2018 - toddrme2178@gmail.com

View File

@@ -13,6 +13,7 @@
# published by the Open Source Initiative.
# Please submit bugfixes or comments via http://bugs.opensuse.org/
#
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
@@ -20,10 +21,10 @@
Name: python-colorspacious
Version: 1.1.0
Release: 0
License: MIT
Summary: Python library for doing colorspace conversions
Url: https://github.com/njsmith/colorspacious
License: MIT
Group: Development/Languages/Python
Url: https://github.com/njsmith/colorspacious
Source: https://files.pythonhosted.org/packages/source/c/colorspacious/colorspacious-%{version}.zip
BuildRequires: %{python_module devel}
BuildRequires: %{python_module numpy}
@@ -40,14 +41,13 @@ BuildArch: noarch
%python_subpackages
%description
Colorspacious is a powerful, accurate, and easy-to-use library for
performing colorspace conversions.
Colorspacious is a library for performing colorspace conversions.
In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), we also include: color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009); a
complete implementation of `CIECAM02
<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually
CIELab, CIELCh), it also includes color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009), a
complete implementation of CIECAM02
<https://en.wikipedia.org/wiki/CIECAM02>, and the perceptually
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).