SHA256
3
0
forked from pool/glibc
glibc/powerpc-software-sqrt.patch

118 lines
4.3 KiB
Diff
Raw Normal View History

2015-02-13 Joseph Myers <joseph@codesourcery.com>
[BZ #17967]
* sysdeps/powerpc/fpu/e_sqrtf.c (__slow_ieee754_sqrtf): Use
__builtin_fmaf instead of relying on contraction of a * b + c.
2015-02-12 Joseph Myers <joseph@codesourcery.com>
[BZ #17964]
* sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Use
__builtin_fma instead of relying on contraction of a * b + c.
Index: glibc-2.21/sysdeps/powerpc/fpu/e_sqrt.c
===================================================================
--- glibc-2.21.orig/sysdeps/powerpc/fpu/e_sqrt.c
+++ glibc-2.21/sysdeps/powerpc/fpu/e_sqrt.c
@@ -99,38 +99,41 @@ __slow_ieee754_sqrt (double x)
/* Here we have three Newton-Raphson iterations each of a
division and a square root and the remainder of the
argument reduction, all interleaved. */
- sd = -(sg * sg - sx);
+ sd = -__builtin_fma (sg, sg, -sx);
fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
sy2 = sy + sy;
- sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
+ sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
+ sqrt(sx). */
/* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
between the store and the load. */
INSERT_WORDS (fsg, fsgi, 0);
iw_u.parts.msw = fsgi;
iw_u.parts.lsw = (0);
- e = -(sy * sg - almost_half);
- sd = -(sg * sg - sx);
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
if ((xi0 & 0x7ff00000) == 0)
goto denorm;
- sy = sy + e * sy2;
- sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx). */
+ sy = __builtin_fma (e, sy2, sy);
+ sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
+ sqrt(sx). */
sy2 = sy + sy;
/* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
fsg = iw_u.value;
- e = -(sy * sg - almost_half);
- sd = -(sg * sg - sx);
- sy = sy + e * sy2;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
+ sy = __builtin_fma (e, sy2, sy);
shx = sx * fsg;
- sg = sg + sy * sd; /* 64-bit approximation to sqrt(sx),
- but perhaps rounded incorrectly. */
+ sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
+ sqrt(sx), but perhaps
+ rounded incorrectly. */
sy2 = sy + sy;
g = sg * fsg;
- e = -(sy * sg - almost_half);
- d = -(g * sg - shx);
- sy = sy + e * sy2;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ d = -__builtin_fma (g, sg, -shx);
+ sy = __builtin_fma (e, sy2, sy);
fesetenv_register (fe);
- return g + sy * d;
+ return __builtin_fma (sy, d, g);
denorm:
/* For denormalised numbers, we normalise, calculate the
square root, and return an adjusted result. */
Index: glibc-2.21/sysdeps/powerpc/fpu/e_sqrtf.c
===================================================================
--- glibc-2.21.orig/sysdeps/powerpc/fpu/e_sqrtf.c
+++ glibc-2.21/sysdeps/powerpc/fpu/e_sqrtf.c
@@ -87,26 +87,28 @@ __slow_ieee754_sqrtf (float x)
/* Here we have three Newton-Raphson iterations each of a
division and a square root and the remainder of the
argument reduction, all interleaved. */
- sd = -(sg * sg - sx);
+ sd = -__builtin_fmaf (sg, sg, -sx);
fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
sy2 = sy + sy;
- sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
- e = -(sy * sg - almost_half);
+ sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to
+ sqrt(sx). */
+ e = -__builtin_fmaf (sy, sg, -almost_half);
SET_FLOAT_WORD (fsg, fsgi);
- sd = -(sg * sg - sx);
- sy = sy + e * sy2;
+ sd = -__builtin_fmaf (sg, sg, -sx);
+ sy = __builtin_fmaf (e, sy2, sy);
if ((xi & 0x7f800000) == 0)
goto denorm;
shx = sx * fsg;
- sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx),
- but perhaps rounded incorrectly. */
+ sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to
+ sqrt(sx), but perhaps
+ rounded incorrectly. */
sy2 = sy + sy;
g = sg * fsg;
- e = -(sy * sg - almost_half);
- d = -(g * sg - shx);
- sy = sy + e * sy2;
+ e = -__builtin_fmaf (sy, sg, -almost_half);
+ d = -__builtin_fmaf (g, sg, -shx);
+ sy = __builtin_fmaf (e, sy2, sy);
fesetenv_register (fe);
- return g + sy * d;
+ return __builtin_fmaf (sy, d, g);
denorm:
/* For denormalised numbers, we normalise, calculate the
square root, and return an adjusted result. */